Derivation using "Infenitesmal Strain Theory" from the Rod Theory
% Derive the representation of force in the body frame.
syms alpha r F_e M_e l_t GJ EI GA EA M_y M_z F_y F_z Delta_theta_h;
assume([alpha r F_e M_e l_t GJ EI GA EA M_y M_z F_y F_z Delta_theta_h], 'real')
assume([alpha r F_e M_e l_t GJ EI GA EA M_y M_z F_y F_z Delta_theta_h], 'positive')
K = diag([ EI, EI, GJ, GA, GA, EA]) % this is the K matrix
K =
R_0 = simplify(Rz(pi)*Rx(-pi/2 - alpha))
R_0 =
Adg0 = [R_0 zeros(3); skew(p_0)*R_0 R_0];
% the negative or possitive depending on the positive or negative face.
Notice that the and are downward in the global brame. Using Equation (20)
W = Adg0'*We + [0;0;Delta_theta_h*GJ;0;0;0 ] % the wrench in the body frame.
W =
D_l = simplify(l_t* D_xi(6)) % since Dl = l-l_star
D_l =
D_l = collect(D_l, [F_e, Delta_theta_h])
D_l =
This can be rearranged to be Eq. (29) in the paper