Transform the Wrench to the Body Frame
% Derive the representation of force in the body frame.
syms alpha r F_e M_e tau_a l_t GJ EI GA EA M_y M_z F_y F_z;
assume([alpha r F_e M_e tau_a l_t GJ EI GA EA M_y M_z F_y F_z], 'real')
assume([alpha r F_e M_e tau_a l_t GJ EI GA EA M_y M_z F_y F_z], 'positive')
K = diag([ EI, EI, GJ, GA, GA, EA]) % this is the K matrix
K =
R_0 = Rz(pi)*Rx(-pi/2)*Rx(-alpha)% This is R_0
R_0 =
Ad = [R_0 zeros(3); skew(p_0)*R_0 R_0];
% the negative or possitive depending on the positive or negative face.
Using Equation (20)
W = Ad'*We %+ [0;0;tau_a;0;0;0 ] % the wrench in the body frame.
W =
This is corresponding to Eq. 22 in the paper.
Derivation of TCA model using the Kirchhoff-Love's Equation
syms F_e M_e alpha M_t M_b Delta_theta GJ EI r_h r alpha_h alpha_star r_star DLH l_t F_e
M_t = M_e*sin(alpha) + F_e*r*cos(alpha) % twising moment along tangent direction.
M_t = M_b = M_e*cos(alpha) - F_e*r*sin(alpha); % bending moment along binormal direction.
f1 = M_b/(EI) == cos(alpha)^2/r - cos(alpha_h)^2/r_h
f1 =
f2 = M_t/(GJ) == sin(alpha)*cos(alpha)/r - sin(alpha_h)*cos(alpha_h)/r_h
f2 =
[Me, Fe] = solve(f1, f2,[M_e, F_e]);
Me = simplify(Me,'Steps',30);
Me = collect(Me, [GJ, EI])
Me =
Fe = simplify(Fe,'Steps',25);
Fe = collect(Fe, [GJ, EI])
Fe =
This is equibalent to Eq. (25) in the paper after we use Eq. (24)