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Abstract— In nature, animals with soft body parts can control
the parts to different shapes, e.g., an elephant trunk can
wrap on a tree branch to pick it up. But most research on
manipulators only focuses on how to control the end effector,
partly because the arm of the manipulator is rigidly articulated.
With recent advances in soft robotics research, controlling a
soft manipulator into many different shapes will significantly
improve the robot’s functionality, such as medical robots
morphing their shape to navigate the digestive system and then
delivering drugs to the required location. However, controlling
the shape of soft robots is challenging since the dynamics of soft
robots are highly nonlinear and computationally intensive. In
this paper, we leverage a physics-informed data-driven method
using the Koopman operator to realize shape control of soft
robots. The dynamics of a soft manipulator are simulated using
a physics-based simulator (PyElastica) to generate the input-
output data, and the data is used to identify an approximated
linear model based on the Koopman operator. We then for-
mulate the shape-control problem as a convex optimization
problem that is computationally efficient. We demonstrated
the linear model is over 12 times faster than the physics-
based model in simulating the manipulator’s motion. Further,
we can control a soft manipulator into different shapes using
model predictive control (MPC). We envision that the proposed
method can be effectively used to control the shapes of soft
robots to interact with uncertain environments or the shapes
of shape-morphing robots to fulfill different tasks.

I. INTRODUCTION

Despite the fact that robots made from rigid bodies are
the heart of various industries such as manufacturing, soft
robots made from soft materials have recently emerged in
robotics research [1], [2]. Unlike rigid ones, soft robots can
leverage their inherent mechanical compliance to interact
with humans or external environments, leading to many
applications such as grasping or manipulation, locomotion,
rehabilitation, assistance, medical devices, etc [3], [4].

Recently, the soft robotics community has started to in-
vestigate how a robot’s shape can enhance the functional
capabilities of the robot with inspiration from biological
organisms [5]. In fact, various living organisms can change
their body shape to cope with different environments and
response to external stimuli. For example, an octopus can
squeeze its body through gaps much smaller than body
size [6], and moth larvae can curl up to roll away from
predators [7]. Inspired by biological organisms, researchers
have developed various robots to leverage different shapes for
different functions. For instance, Shah et al. investigated how
a soft robot can use different shapes for either crawling or
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rolling in different environments [8]. Hwang et al. leveraged
a novel kirigami composite to develop a morphing drone that
can autonomously transform from ground to air vehicle [9].
Many other recent research on how to shape morphing can
enhance a robot’s functionality is reported in the review
paper [5].

To leverage different shapes to enhance functions, we need
to control the shape of a soft robot to the desired ones.
But it is challenging to control a soft robot’s shape since
soft robots exhibit highly nonlinear dynamics. Researchers
have developed various physics-based models using different
methods such as Cosserat Rod theory [10], and model
reduction method [11], among many others [12]. Although
such models can achieve high-fidelity simulation of various
types of soft robots [13], they generally require a long
computational time, making them unsuitable for the shape
control of soft robots.

In this paper, we aim to leverage existing physics-based
models to obtain computationally efficient data-driven mod-
els and then use the resulting model for controlling the shape
of soft robots. Specifically, we will use the PyElastica [10]
simulation software to generate sufficient input-output data
for a given soft robot. Using the data, we will then es-
tablish a data-driven model based on Koopman operator
theory [14] to obtain a finite-dimensional approximation of
a soft robot [15]. The Koopman operator can represent a
nonlinear dynamical system with a finite-dimensional linear
model to approximate the original dynamics of a soft robot.
With such a linear model, we can directly use existing control
methods such as model predictive control to control a soft
robot’s shape.

Note that researchers have recently used the Koopman
operator theory to control soft robots [15]–[19]. The work
in [15] shows promising results in controlling the tip of
the robot to trace a desired trajectory while [16] used the
Koopman operator approach in modeling of soft robotic
swimmer. But controlling the shape of soft robots is different
from existing problems (e.g., tip position control). Therefore,
our work adds another application of Koopman operator-
based system identification and control to control the shape
of soft robots. In other words, the contribution of this
paper is to develop a data-driven method to control a soft
robot’s shape by leveraging existing physics-based models
and Koopman operator theory.

The rest of the paper is organized as follows. In section II,
we formulate the shape control problem for a soft robot. In
Section III, we provide the mathematical underpinnings of
the Koopman operator, its approximation from data, and the
algorithm used for system identification using the Koopman



operator approach. In section IV, we describe the Model
Predictive Controller used with the identified linear system.
Section V describes the simulation setup: how to generate
the input-output data for a soft robot using the PyElastica
[10]. Section VI shows the results of system identification
and shape control.

II. SHAPE CONTROL PROBLEM

In this section, we formulate the shape control problem
by using a general soft manipulator. We will show how to
use this framework to solve the shape control problem in
subsequent sections.

Given a soft manipulator of length L, we divide it into
N − 1 segments with equal length. The shape for the i-th
(i = 2, . . . , N ) segment is specified by section at its top. At
a discrete time step tk, we use gi(tk) ∈ SE(3) to represent
the top section’s position and orientation in the inertia frame
Figure 1.

gi(tk) =

[
Ri(tk) pi(tk)

0 1

]
(1)

where Ri(tk) ∈ SO(3) represents the orientation and
pi(k) ∈ R3 presents the position for the section’s centroid.
Denote the i-th segment as Li. For each segment, we assume
we can apply input u in terms of forces/torques at each seg-
ment’s top. In reality, such forces/torques may be generated
by artificial muscles embedded inside soft materials [20].
With such a setup, the shape of the soft manipulator can be
approximated by gi(tk) ∈ SE(3) at time step tk.
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Fig. 1. Illustration for the shape control problem for a soft manipulator
divided into N − 1 equal length segments with the top of each segment
shown as a yellow cross-section. The manipulator shown in solid green
color is its initial shape (t = 0) and the shape shown in faded green shows
the target shape.

Given a desired shape for the soft manipulator represented
by giref (i = 1, . . . , N−1), the shape control problem can be
formulated as finding the control input u(tk) that minimizes
the distance between gi(tk) and giref . Note that the distance

in SE(3) can be defined separately for the position and
orientation with the Euclidean distance for position and
geodesic distance for orientation. In this paper, we will focus
on a simplified problem by only considering the position
distance. In this case, the problem can be formulated as:

minimize
u(tk)

N−1∑
i=1

||pref − pi(tk)||22 (2a)

subject to

x(tk+1) = f(x(tk), u(tk)), (2b)
h(x(tk), u(tk)) ≤ 0 (2c)

where pref ∈ R3 is the desired position, x(tk) ∈ Rn,
u(tk) ∈ Rm are the states and control input of the system
at time instant tk, respectively. h(x(tk), u(tk)) ≤ 0 are the
various constraints applied to the state and control variables
which are commonly known as polyhedral constraints.

Generally, the dynamics for a given soft robot (i.e.,
x(tk+1) = f(x(tk), u(tk))) is highly nonlinear, involving
complicated physics-based models [12]. Such models can
only be solved numerically with considerable computation
time, preventing them from real-time shape control of soft
robots. Inspired by recent work on using the data-driven
method to identify approximated models from either nu-
merical or experimental data for controlling soft robots
for manipulation [15]–[19], we aim to obtain a data-driven
model using Koopman operator theory and then use the
model to control the shapes of soft robots.

III. SYSTEM IDENTIFICATION USING KOOPMAN
OPERATOR THEORY

Given the complicated dynamics of a soft robot, we will
use Koopman Operator theory to directly identify a compu-
tationally efficient linear model using the input-output data
generated by physics-based models (e.g., PyElastica [10]). In
this section, we briefly review the preliminaries for Koopman
operators.

Koopman operator theory can be used to construct a linear
model of a forced nonlinear system in an infinite dimensional
Hilbert space from input-output data of the nonlinear system.
With the constructed linear model, we can directly use exist-
ing linear system control techniques. The Koopman operator
approach is undeniably becoming an increasingly popular
data-driven method for the control of nonlinear dynamical
systems. The theoretical underpinnings of the Koopman
Operator were formulated by Bernard Koopman in [14], and
this framework became popular after the development of the
Dynamic Mode Decomposition algorithm [21].

Given a nonlinear dynamical system, the Koopman op-
erator first maps the states of the original system using
scalar functions (also called observables) of the states into
a so-called lifted space with new state variables. The new
system in the lifted space with the new state variables is an
infinite dimensional linear system. Unlike the linearization
about a point that becomes inaccurate when operating away
from the linearizing point, the Koopman operator describes
the evolution of the scalar observable throughout the state



space in a linear fashion. This makes the Koopman operator
approach preferable when realizing linear representation of
nonlinear systems [22].

We briefly review the Koopman operator framework for
control systems, as described in [15]. Assume a discrete
nonlinear dynamical system given by:

x(tk+1) = f(x(tk))

y(tk) = g(x(tk))
(3)

where x(tk), x(tk+1) ∈ Rn are the state vector at time step
tk, tk+1 respectively, y(tk) ∈ Rr is the output of the system
at time instant tk. To simplify notations, in the following,
we use x(tk) and xtk interchangeably.

To map the state x to a lifted space, we use a basis or
observation function ϕ(x(tk)) : Rn → Rc ∈ F , where F
is the space of all basis functions. The Koopman Operator
K : F → F is defined as:

(Kϕ)(xtk) = ϕ(f(xtk)) (4)

which can be rewritten as:

(Kϕ)(xtk) = ϕ(xtk+1) (5)

which means the Koopman operator simply updates the
observation of the state in the lifted space from the current
time step to the next step.

K is an infinite dimensional linear operator, but we can use
a finite subspace to approximate it. Let the finite dimensional
approximation of K be K̄. K̄ operates on F̄ ⊂ F which
is the subspace spanned by a finite set of basis functions.
K̄ can be obtained using EDMD as discussed in [23], and
this approximation is achieved by solving the following
optimization problem

minimize
A

K−1∑
k=0

||ψ(xtk+1
)−Aψ(xtk)||22 (6)

where ψ(x) = [ψ1(x) , ψ2(x) , ψ3(x) , . . . , ψNc(x)]
⊤ with

{ψi : Rn → R}Nc
i=1 represents the Nc basis functions,

A ∈ RNc×Nc is the finite dimensional approximation of the
Koopman Operator, Nc is the total number of basis functions,
K is the cardinality of the dataset given by D = {xtk}Kk=0

and ⊤ is the transpose operator.
Solving the minimization problem of (6), we can represent

the nonlinear dynamical system given by (3) as the following
discrete linear dynamical system

z(tk+1) = Az(tk)

ỹ(tk) = Cz(tk)
(7)

where z(tk) = ψ(x(tk)) ∈ RNc and ỹ(tk) is the output. The
matrix C ∈ Rr×Nc is obtained just like A by solving the
following minimization problem

minimize
C

K∑
k=1

||y(tk)− Cψ(x(tk))||22 (8)

Similarly, for a nonlinear dynamical system with control
inputs, the methodology discussed can be used. Consider a
discrete nonlinear dynamical system given by

x(tk+1) = f(x(tk), u(tk))

y(tk) = g(x(tk))
(9)

where u(tk) ∈ Rm where m is the dimension of control
inputs of the dynamical system. Then in this case to approx-
imate the Koopman Operator, the minimization problem in
(6) changes to

minimize
A,B

K−1∑
k=0

||ψ(x(tk+1))− (Aψ(x(tk)) +Bu(tk))||22

(10)
Thus, by solving the minimization problem of (10), the fi-

nite approximation of the Koopman operator is approximated
by A and B, and it acts as one step predictor of the nonlinear
dynamical system described by (9). The minimization prob-
lem for the output equation i.e. for C matrix remains the
same as given by (8). It is advisable to include velocities
in the states when identifying the dynamics of a mechanical
system [15]. These can be included by modifying the domain
of the basis function such that {ψi : Rn+nd+md → R}Nc

i=1,
where d is the number of delays.

We will use the Extended Dynamic Mode Decomposition
(EDMD) [15], [23] to construct the linear model of a soft
robot since EDMD is a data-driven method that approximates
the leading Koopman eigenfunctions, eigenvalues and modes
where as other data-driven methods such as generalized
Laplace analysis, Ulam Galerkin method, and Dynamic
Mode Decomposition cannot approximate the three quanti-
ties [23]. One could also use neural networks to approximate
the three quantities but neural networks require a lot of
training data and tuning.

IV. MODEL PREDICTIVE CONTROL FOR KOOPMAN
OPERATOR BASED LINEAR SYSTEM

In this section, we introduce the basic idea of model
predictive control and then develop on the concept to show
how MPC can be used alongside Koopman Operator.

Many model-based controllers have been developed for
soft robots [24], [25], but most of them rely on simplifying
assumptions and mostly are static. Such controllers have
been proven to be very efficient for the static control of soft
robotic manipulators. The disadvantage of these controllers
is that they are only limited to static control and they are
not suitable for dynamic control of complex soft robotic
systems. Dynamic control of soft robots is achieved by
supplementing a piece-wise constant curvature model with
data-driven trajectory optimization but again the downside
of this approach is that the training is very task-specific
[15]. There also have been some more realistic physics-based
models, but they are computationally very expensive.

From Section III, we know that the Koopman operator ap-
proximates a linear system of a nonlinear dynamical system
from data. In [15], they constructed MPC controller from



a linear Koopman representation of a nonlinear dynamical
system. We use a similar approach demonstrated in [15] to
construct a MPC for shape control of a soft manipulator.
Since the identified model is linear, the MPC optimization
has computational advantages over nonlinear ones as the
MPC optimization problem is convex whereas, for the non-
linear models, it is not. Since the optimization problem is
convex, it can be solved very efficiently with any method
for convex optimization. For Koopman-based MPC, we first
define the objective function as follows:

J = z(tNh
)⊤Q(tNh

)z(tNh
) + q(tNh

)⊤z(tNh
)+

Nh−1∑
i=0

{z(ti)⊤Q(ti)z(ti) + u(ti)
⊤R(ti)u(ti) + q(ti)

⊤z(ti)

+ r(ti)
⊤u(ti)}

where Nh ∈ N is the prediction horizon, Q(ti) ∈ RNc×Nc ,
R(ti) ∈ Rm×m are positive semidefinite matrices, q(ti) ∈
RNc , and r(ti) ∈ Rm. Here Q, R, q, r are constant matrices
or vectors. Then we can iteratively solve a convex quadratic
program over a receding horizon as shown below:

minimize
u(tk)

J (11a)

subject to

z(tk+1) = Az(tk) +Bu(tk), (11b)
E(ti)z(ti) + F (ti)u(ti)− b(ti) ≤ 0, (11c)
z(0) = ψ(x(tk)) (11d)

where E(ti) ∈ Rc×Nc and F (ti) ∈ Rc×m and the vector
b(ti) ∈ Rc define state and input polyhedral constraints
where c denotes the number of constraints. Every time the
optimization routine is called the predictions need to be set
to the current lifted state ψ(x(tk)). While the size of the cost
and constraint matrices depend on the dimension of the lifted
state Nc, [26] shows that these can be rendered independent
of Nc by transforming the problem into its so-called dense-
form [15]. We use the above framework to solve the shape
control problem proposed in section II.

V. SIMULATION SETUP

In this paper, we use the PyElastica, a physics-based
simulator for soft robots based on the Cosserat rod theory,
to generate the data for the Koopman operator. We choose
PyElastica because it is relatively accurate, open source, and
easy to set up.

A. Generating data from PyElastica

When using PyElastica, we need to set up a simulation
where the user is required to define a system of rods,
set up initial and boundary conditions on the rod, run the
simulation, and collect data for post-processing. The detailed
process can be found in [27].

The physical parameters defined for our manipulator are
listed in Table I. We fix the base of the robot as the boundary
condition. The actuation of the manipulator is achieved by
applying torques distributed along the length of the arm. The

torques are decomposed into orthogonal torque functions in
the local normal and bi-normal directions. The magnitude of
the torques in a direction is obtained via continuous splines
characterized by N independent control points. In our case,
we don’t apply the torque in the tangent (axial) direction to
twist the robot.

TABLE I
LIST OF PHYSICAL PARAMETERS FOR THE SIMULATION SETUP

Physical Parameter Value Unit

Number of tracking points 6 N/A
Starting Position of the rod (vector) [0.0, 0.0, 0.0 ] N/A
Direction in which rod extends(vector) [0.0, 0.0, 1.0] N/A
Normal vector of rod [1.0, 0.0, 0.0 ] N/A
Length of rod 1.00 meter (m)
Radius of the tip 0.05 meter (m)
Radius of the base 0.05 meter (m)
Density of the rod 1.0 ×103 kg/m3

Energy dissipation constant 10.00 N/A
Youngs Modulus 1.00 ×107 Pa
Poisson’s Ration 0.50 N/A

*The vectors are defined with respect to the standard right-hand coordinate system.

Fixed base

Control points

Torque
Normal
Binormal
Spline

Fig. 2. The schematic for the simulation setup.

Note that spline control points for normal and binormal
directions are different, and two splines are needed. To gen-
erate the two splines for each simulation case, we randomly
generate two torques in normal and binormal directions for
each control point. In the initial state, the robot is in a straight
and upright shape. In the simulation, the two torque splines
are kept constant as a step input for the system. We use the
position Verlet algorithm as the time stepping algorithm and
time step ∆t = 0.0001 s to simulate 20 s for each case,
which can ensure the soft robot reaches steady state final
shape.

B. Data collection for system identification

Koopman Operator can be used to construct a linear model
of the soft robotic system constructed in section III. To do
this, we collect data for system identification by simulating
the robot with random input.

We simulate the manipulator for a total of 30 cases, For
each simulation case, we collect 2000 snapshots with a
sampling time of Ts = 0.01 s. These data sets are used for



approximating the Koopman Operator. The system identifica-
tion was carried out by lifting the collected snapshots using
the basis function with delays defined in section III. We used
first-order polynomials with delay d = 1 as the basis function
and then performed least square regression as shown in (10)
and (8) to obtain the A, B, and C matrices, respectively
[15] with A ∈ R47×47, B ∈ R47×10, and C ∈ R18×47. For
the problem, we have chosen a total of 47 basis functions
with degree 1. For the 47 functions, we defined the first
18 to be the output of the system, then 28 are the delay
coordinates, and a constant 1 has been added so that we do
not lift the inputs. One might simply think to add higher
degree polynomials or more number of basis functions to
minimize the prediction error by the Koopman-based linear
model ϕ̇(x) = Aϕ(x), but with the increase in the order of
the polynomial, there are more functions in ϕ, then more
derivatives ϕ̇ have to be expressed by ϕ. As a consequence
of increasing the order of the polynomials the derivatives
ϕ̇ grow in complexity which makes it harder for ϕ̇ to be
expressed by ϕ [28].

VI. RESULTS

In this section, we first quantify the identified linear model
in terms of accuracy and speed by comparing it with the
physics-based model. We demonstrate that it can realize
much faster tip and shape control with the identified linear
model and an MPC.

A. The Accuracy and Speed of the Identified Linear Model
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Fig. 3. The maximum prediction error (in blue) and minimum prediction
by the Koopman based linear model (in green). The error at each time-step
is called using (12).

The accuracy of the Koopman Model is estimated by
calculating the error that is defined as the Euclidean distance
between the predicted output and the output of the physics-
based model. The accuracy of the model approximated by the
Koopman operator depends on the number of basis functions
and the types of basis functions. We validated the identified
linear model against 6 different data sets generated with the
same method as mentioned above.

The linear model predicted by the Koopman operator has
a maximum mean RMSE of 35E-4 meters and minimum
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Fig. 4. Results for the control of the tip of the manipulator. The plot
shows the Euclidean distance (in meters) between the tip and the reference
set point. Here ||.||2 denotes the Euclidean norm.

mean RMSE of 6.78E-4 across all states. Fig. 3 shows the
maximum and minimum mean prediction error between the
Koopman-based linear model and Physics based model. The
prediction error for other validation cases lies between the
maximum mean and minimum mean error mentioned. Here
the mean prediction error at time step ti is defined as:

Errormean(ti) =
1

L

√√√√ 1

Nx

Nx∑
j=1

((xj(ti)− xjref (ti))2)

(12)
where L = 1 is the length of the soft manipulator in meter,
Nx = 18 is the number of states, xj(ti), xjref (ti) is the
jth state vector at time ti approximated by Koopman based
model and actual physics-based model, respectively.

For the computation time, the Koopman-based linear
model is much more time efficient compared to its Physics-
based counterpart. To ignore the effect of other operating
system tasks interfering with simulation we measure the
mean time. For the Koopman-based model the mean time
was calculated by running the model 7 times and each
run consisting of 100 loops. Similarly, the physics-based
model was 7 times and each run consisted of 10 loops, and
dt = 10−4 was fixed when running the time performance
test. The time comparison tests are run on a computer having
16 GB Random Access Memory (RAM) and a 2.6 GHz CPU.
Table II shows the comparison between the mean time taken
by both the models to run for a finite number of time steps.
We can see the Koopman-based linear model is much faster
compared to the actual physics-based model: over 12 times
faster except in the case of the single step.

Controlling the tip of the soft robot is a very special case
of the shape control problem that we proposed in section
II. Unlike controlling the shape of the soft robot where
we are required to control multiple points, we control only
one point, i.e., the tip of the manipulator. The problem of
controlling the tip of the soft manipulator can also be called
as set point tracking in three-dimensional space. We use the
linear Model Predictive Controller with a prediction horizon
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Fig. 5. Results for controlling the soft robot to three different shapes. The object in solid green is the shape of the actual soft robot and the gray envelope
is the reference shape. For reference X axis has been color coded as Green, similarly, the Y axis has been color-coded as Red.

TABLE II
MEAN TIME COMPARISON OF PHYSICS AND KOOPMAN-BASED MODEL

# Time steps Physics-based Koopman-based

1 1.7 ms ± 353 µs 188 µs ± 29.5 µs
10 2.21 ms ± 112 µs 159 µs ± 50.7 µs
100 9.14 ms ± 386 µs 696 µs ± 23.5 µs
1000 60.8 ms ± 1.13 ms 4.75 ms ± 111 µs
10000 568 ms ± 7.2 ms 44.6 ms ± 640 µs
100000 5.6 s ± 49.3 ms 435 ms ± 5.79 ms

* The time shown is the mean time per loop.
* For Koopman-based model the mean is over 7 runs, 100 loop each
* For Physics-based model the mean is over 7 runs, 10 loop each

Nh = 25 steps. The desired reference set points as [0.1,
0.2, 0.3] shown in section IV. To demonstrate the control
of tip, we move the tip of the soft manipulator from the
rest position, i.e., from [0, 0, 1] to [0.1, 0.2, 0.3] where the
elements of the vector are the x, y, z coordinates (in meter)
of the manipulator. The result is shown in Figure 4, which
shows the Euclidean distance between the tip of the robot
and the reference point with time. From the plot is clear that
the MPC controller can move the tip to the desired location
within 0.5 s.

B. Shape Control with Koopman-based MPC

We further demonstrate the shape control of a soft ma-
nipulator by controlling it to different shapes, specifically
three letters: ‘C’, ‘S’, and an inverted ‘U’. The linear Model
Predictive Controller is used to derive the optimal control
input over the prediction horizon of Nh = 25. For different
shapes, the controller has a similar cost function and no
input or state polyhedral constraint. The objective of the
controller is to move the points being tracked to the desired
reference location in the workspace of the robot. Hence a
cost function is chosen in such a way that it penalizes the
distance between the reference point and points on the robot’s
body. To generate the reference or desired shapes, we use
the shooting method with the physics-based model. Then
these shapes are supplied as the reference shapes to the MPC
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Fig. 6. Position error of the tracking points corresponding to the U shape
acquired by the soft manipulator as shown in Figure 5. The term TP in the
plot stands for Tracking Point and the vector following TP shows RMSE
for X, Y, and Z for a particular tracking point. Here the Root Mean Squared
Error (RMSE) is measured in meters. (Note that the error for Tracking point
1 was always 0 as it was static, hence it was ignored in the error plot.)

controller. Note that since the bottom of the manipulator is
rigidly fixed to the ground, the segment close to the ground
needs to resemble a vertical shape due to the spline used to
interpolate the torques in PyElastica. If we do not consider
this segment, however, the desired shapes are indeed close
to letters ‘C’ and ‘S’.

The results for the three shapes are illustrated in Fig. 5,
where we plot the robot’s final shape and the desired shape.
From the figure, we can see the robot can accomplish the
desired shape. To quantify the error between the final and
desired shape, we plot the RMSE in meters for different
tracking points for the morphed shapes in Figure 6. Root
Mean Squared Error is calculated as the RMSE between the
final position generated by the controller for a tracking point
and the corresponding reference point. As we can see from
the error in Figure 6, the final position error can be quite
small (< 5% with respect to the manipulator’s length).

VII. CONCLUSION

In this paper, we have used a data-driven method based
on the Koopman operator to establish an approximated linear



model of a soft manipulator using the input-output data from
the physics-based model that is accurate but not computa-
tionally efficient. The linear model is accurate and 12 times
faster than the physics-based model. Combining with a linear
Model Predictive Controller (MPC), we successfully control
the shape of the soft robot, which is very difficult for a
physics-based model.

This approach shows promising results, but significant im-
provement can be made. For example, a much more accurate
model approximation can be obtained if the eigenfunctions
of the Koopman Operator can be approximated from data or
we can approximate the robot with more number of tracking
points. In the future, we will extend this method to control a
soft robot made from a combination of several rods to form
a polyhedron (e.g., tetrahedron, Octahedron, etc.) to generate
more diverse shapes, which can be potentially experimentally
verified through soft robot prototypes driven by artificial
muscles.
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