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Abstract— Soft robots—robots made of soft materials—have
strong potential for applications where traditional rigid robots
are not suitable (e.g., safely collaborating with humans). How-
ever, actuation methods for most existing soft robots still require
rigid components to function, and when they do not, they
have a limited range of forces and displacements. A new
artificial muscle, Twisted-and-Coiled actuators (TCAs), may
provide partial solutions to this. They are capable of producing
large forces and deformations comparable to or superior to
human muscles. However, the dynamic modeling for TCAs
when embedded inside soft materials is not trivial due to
the coupling of deformations between the actuators and the
body. In this paper, we model the dynamics for the thermally
driven actuation and extend a dynamic Cosserat rod model to
describe the dynamics of the soft body. We also numerically
simulate the model to test its correctness. The proposed model
is a generalization of existing models and can be applied to
the modeling of soft robots when couplings exist between the
actuator and the soft body.

I. INTRODUCTION

Soft robots can leverage the compliance of flexible ma-
terials to be more adaptable and safer than traditional rigid
robots [1]. For instance, soft manipulators can readily adapt
to uncertain environments, provide safer equipment for use
in medical devices [2], [3], and have the potential to be used
in situations when rigid manipulators may fail (e.g., high
impact scenarios [4], required large deformations, etc.). Soft
manipulators are more adaptable when grasping, contacting,
and avoiding objects relative to rigid ones. These advantages
have lead to the development of a variety of manipulators,
which commonly take some biological inspiration such as
elephant trunks [5] and octopus arms [6], [7], [8]. Some
of the major difficulties for soft robots are how to best
actuate the manipulator and dealing with the complications
in kinematic and dynamic modeling due to infinite degrees
of freedom in the soft and compliant bodies.

There have been many approaches to actuate soft
robots. The most common strategies among these are ca-
bles/tendons [7], [9], pneumatics [6], and smart materi-
als such as shape memory alloys (SMAs) [10], Ionic-
Polymer/Metal Composites (IPMCs) [11], and Dielectric-
Elastomer Actuators (DEAs) [12]. For actuation with cables
and pneumatics, it is necessary to have external components
to provide the actuation (e.g., motors and pumps) that force

*This work is partially supported by the National Science Foundation
under Grant IIS-1755766.

Ben Pawlowski, Jiefeng Sun, and Jianguo Zhao are
with the Department of Mechanical Engineering, Colorado
State University benpski@rams.colostate.edu,
J.Sun@colostate.edu, and
Jianguo.Zhao@colostate.edu

some portion of the system to no longer be compliant and
unnecessarily make the manipulators bulky. Smart materials
can be simply actuated by applied voltages, but they in
general suffer from high manufacturing costs [13] and low
force generations.

We recently proposed to actuate soft robots with twisted-
and-coiled actuators (TCAs), a new type of artificial muscle
that can be produced from low-cost sewing thread. TCAs
made from conductive sewing threads can be actuated by
directly applying electricity and can generate more than 100
times the force a human muscle of the same weight [14].
Compared with other artificial muscles, TCAs are low cost
and can be easily fabricated through the twisting and coil-
ing of threads. Further, TCAs are able to generate either
extension or contraction force determined by the coiling
directions, and the actuation force can be tuned by changing
the spring index. TCAs can be actuated with an applied
voltage through Joule heating, thus requiring minimal exter-
nal components for their actuation. Therefore, TCAs pose a
promising strategy to actuate soft robots in a cheap and easy-
to-manufacture way that needs minimal external components
to operate.

However, a major difficulty with TCAs comes from mod-
eling their behavior when embedded in soft materials. The
force generated by a TCA depends on both its temperature
and its deformation [15]. If a TCA is embedded inside
a soft material, its deformation will be coupled with the
material’s deformation, which will in turn be determined
by the force generated by the TCA. As a result, we need
to consider the modeling of soft bodies and the embedded
TCAs simultaneously, complicating the modeling process.
The result of this coupling is that existing static and dynamic
models of soft robots do not fully capture the behavior and
have to be extended to properly model a manipulator driven
by TCAs.

Various modeling methods for soft or compliant robots
have been proposed recently. The most typical method
assumes a slender body (i.e., the body length is much
longer than its width), allowing for the usage of rod or
beam models. In these rod models, it is common to make
a constant curvature (CC) approximation [16], [8], which
assumes that the manipulator has a circular shape and
allows for modeling strategies from rigid robots (e.g., DH-
parameters). However, this assumption limits the model to
being static with negligible external forces. Other approaches
include extensions to the CC model, such as piecewise
constant curvature (PCC) [17] and the discrete Cosserat rod
approach [18]. Other non-discrete approaches use other rod
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Fig. 1. a) An example of a manipulator investigated in this paper. It is
composed of three TCAs embedded inside a circular soft body. They are
placed symmetrically around the center and separated by an angle of 120◦.
b) The setup for analyzing a Cosserat rod, here a single embedded TCA is
shown in gray.

and beam theories like Euler-Bernoulli beam theory [10],
Kirchoff rod theory [19], and Cosserat rod theory [20],
[21], which is the most general theory capable of modeling
most phenomena in soft robots. However, these models are
nonlinear and typically have no analytic solution and must be
numerically solved. Finite element analysis (FEA) has also
been used for modeling [2] cases where rods are not a good
approximation. The general trade-off is that the constant
strain assumption reduces the computational complexity at
the cost of accuracy and ability to capture more complex
interactions.

In this paper, we will address the dynamics modeling
for soft robots actuated by conductive TCAs by combin-
ing a thermodynamic model and a dynamic Cosserat rod
model. The thermodynamic model is necessary to predict
the temperature of TCAs given an applied voltage. The
thermodynamics will treat each TCA embedded inside a
soft body as a resistive heat source diffusing heat through
the body. Then, a dynamic Cosserat rod model [21] will be
leveraged to analyze the dynamic response of the robot by
considering the coupling of TCAs and the soft body. Inte-
grating the thermodynamics and the dynamic Cosserat rod
model, we can obtain the full forward dynamics, going from
input voltage to the manipulator motion. Such a modeling
framework will lay a theoretical foundation for using TCAs
to enable dynamic, miniature, and untethered soft robots.

The rest of this paper is organized as follows. In section II,
we present the thermodynamic modeling and the mechanics
of the manipulator. Then, in section III, we simulate the
dynamic models and discuss the simulation results. In the
final section, we discuss our conclusions and future work.

II. MODELING

Without loss of generality, we will analyze a soft ma-
nipulator shown in Fig. 1a. It is comprised of a soft body
and three TCAs separated radially by 120◦. The TCAs are
fabricated using conductive sewing thread, so that they may
be heated through an applied voltage via Joule heating.
Further, they are fabricated to serve as extension muscles

to eliminate the pre-stretch required by contraction muscles.
Three TCAs are chosen as that is the minimum number to
generate three-dimensional motion. The main feature to note
with this manipulator is that the length is much larger than
the diameter, which will be used for approximations later in
the thermal modeling and the mechanics modeling. We place
the fixed frame at the base of the manipulator with the z-axis
being vertical and the x and y-axes aligned with the TCAs
as shown in Fig. 2.

The goal for the modeling is to be able to predict the
thermal profile and motion of the manipulator given input
voltages to the TCAs. Our only input is voltage as we are
using conductive TCAs which will generate heat when a
voltage is applied and the resulting temperature change in
the TCAs actuate them [15]. Then, once the thermal profile
is determined for the body and TCAs, the temperatures of the
TCAs can be used as inputs into the dynamics to determine
the motion the manipulator.

In the rest of this section, we first develop the thermal
model by treating the TCAs as a heat source and incorporate
conduction through the body with convection at the exposed
surface. Since the body of the manipulator has a much longer
length than its diameter, we only analyze a cross section
rather than the entire body. Due to the asymmetry in the
system, it is necessary to numerically solve the relevant heat
equation. Next, we model the soft body as a Cosserat rod.
With the rod model, we develop the dynamic equations and
incorporate the coupling between the body and the embedded
TCAs. This also requires us to numerically solve a system
of partial differential equations (PDEs).

A. Thermal Model

The TCAs are driven by heat stimulus from electricity
passing through them. The temperature of a TCA will deter-
mine its output force and displacement. In order to predict the
motion of a soft manipulator, we need to establish a thermal
model to relate the input voltage with the temperature of the
TCA.

Fig. 2 shows a cross section of the soft manipulator. The
transient temperature distribution field on the cross section
is governed by the following heat diffusion equation [22]

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+ q̇(t, x, y) = ρcp

∂T

∂t
(1)

where T is temperature distribution throughout the material,
q̇ is heat flux of the material, a function varying with time
t. k, ρ, and cp are the thermal conductivity, mass density,
and specific heat of the material, respectively. The heat flux
value, q̇, depends on the region of the manipulator. If (x, y)
is in the body region, then q̇ = 0, and if (x, y) is in the
region of a TCA, then q̇ = q̇i, where i indicates the i-th
TCA.

The external force exerted on the TCA [23] will influence
its electrical resistance; however, for our range of forces the
resulting change in resistance is roughly 0.1Ω (a 1% change)
so we neglect this effect. We also treat the TCA as a tube
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Fig. 2. Schematic of the 2D thermal model of the soft manipulator.

with the diameter of the twisted precursor fiber as the wall
thickness because at the reference configuration, the coils are
all touching and at most the gaps between the coils would be
0.05 mm, making their influence negligible. Thus, the body
heat flux of a TCA is [22]

q̇i(t) =
4Vi(t)

2

R0l2π (D2 − d2)
, i = 1, 2, 3 (2)

where Vi(t) is the voltage applied to the ith TCA, which
is our control input. R0 is resistance of a unit length of the
TCA, l is the length of a single TCA, D is the outer diameter
of the TCA, and d is the inner diameter of the TCA.

The motion of the soft manipulator will influence the heat
dissipation rate of the soft body, but the velocity will not
exceed 0.1 m/s, allowing us to assume the convection coef-
ficient is constant [22]. So we can use a constant convective
heat transfer coefficient to specify convective heat transfer
through the boundary, namely the circular perimeter of the
cross section in contact with ambient fluid media (gas or
liquid) [22]:

k

(
∂T

∂x
+
∂T

∂y

)
= h(T − T∞) (3)

where T is the temperature distribution on the boundary,
T∞ is the ambient temperature, and h is the convective heat
transfer coefficient.

Since the inner diameter of the TCA is very small
(0.4 mm), we assume the inner surface of the TCA is
an adiabatic surface because with such a small size, the
internal temperature distribution must be uniform and equal
to the temperature of the inner wall, leading to no heat
transfer. Also, due to the maximum temperature of the soft
manipulator’s surface being fairly low (less than 100◦C),
we ignore energy loss from radiation. The parabolic partial
differential equations and the boundary conditions presented
above can be solved with Matlab’s PDE toolbox. The TCA’s
temperature at a certain time can be derived by averaging
the temperatures at all nodes in the TCA region.

With the thermal model, we can predict the behavior of
the TCAs. The working principle for TCAs is that thermal-
induced radial expansion will cause untwisting in these fibers
to generate an untwist torque, which will become an axial
force along the TCA. The characterizing equation for the
TCA behavior is derived in [15] and is:

δ = f1F + f2τ(T ) (4)

where δ is the TCA’s displacement, F is the force generated
along the TCA’s body, τ(T ) is the generated torque with a
dependence on temperature T , and the coefficients f1 and f2
are derived from Castigliano’s Second theorem, the forms of
which can be found in [15].

B. Dynamics Modeling

A Cosserat rod is a way of modeling a slender body by
assuming that the object may be described with a single
spatial dimension s ∈ [0, L], where L is the length of the
body in the reference configuration [21]. A diagram of the
setup for a Cosserat rod can be seen in Fig. 1b. This spatial
dimension is referred to as the material abscissa, which is
the line that runs through the centroid of every cross section
in the body or the centerline of the body. At every point
along the centerline there exists an orthonormal body frame,
typically referred to as the directors, and a transformation
from a fixed frame to this body frame can be described by
a homogeneous transform g comprised of a rotation, R, and
a position, p, this transformation describes the configuration
of the body through space and time. The rates of change for
g with respect to space, s, and time, t, are:

∂g

∂s
, g′ = gξ̂ =

[
R p
0 1

] [
κ̂ λ
0 0

]
(5)

∂g

∂t
, ġ = gη̂ =

[
R p
0 1

] [
ŵ v
0 0

]
(6)

where ′ denotes the derivative with respect to s and ˙ the
derivative with respect to time. ξ ∈ R6 represents the strain
vector, or spatial twist, for the body and it is comprised of
the angular strains, κ ∈ R3, and the linear strains, λ ∈ R3.
η ∈ R6 is the velocity of the rod at a point s, or temporal
twist, and is comprised of the angular velocities, w ∈ R3,
and the linear velocities, v ∈ R3. The operator ·̂ represents
both the transformation from R3 to se(3) and R6 to SE(3).
Another operator ·∧will also be used to represent the inverse
transformation for ·̂. For the wrench balance, we require that
the time rate of change of a cross section’s momentum, γ,
balance with the internal wrench, W int, across the cross
section and the external distributed wrench at the cross
section, W̄ ext. A wrench is the combination of a moment
and a force and represented as W = [moment, force]T .
This may be written as [21]:

∂

∂s
W int + W̄ ext =

∂

∂t
γ (7)

where γ = Γη and Γ = ρdiag(Ix, Iy, J, A,A,A). Γ is the
inertia matrix of a cross section with ρ the density, Ix and Iy
the second area moments of inertia about the x and y axes,
J the polar moment of inertia, and A the area of the cross
section.

Then, using the fact that wrenches and twists form a Lie
Algebra, the balance can be expanded out to [21]:
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W ′
int − ad∗ξW int + W̄ ext = Γη̇ − ad∗ηΓη (8)

the ad∗ξ and ad∗η are the coadjoint maps and are the trans-
poses of the adjoint maps defined as:

adξ =

[
κ̂ 0

λ̂ κ̂

]
, adη =

[
ŵ 0
v̂ ŵ

]
(9)

Then, using Eqs. (5) and (6), it is possible to derive the
rate of change for the strain, ξ, with respect to time. To
do this, we use the fact that partial derivatives can be done
in arbitrary order (i.e., ∂

∂t
∂g
∂s = ∂

∂s
∂g
∂t ). So, we take the

derivatives of Eqs. (5) and (6) to get ġ′ and set the results
equal to each other to get:

ξ̇ = η′ + adξη (10)

Next, we look at how to model the internal wrench of the
body. In the simplest case, the body only has an associated
stiffness and no viscosity. In general, it is necessary to
incorporate both stiffness and viscosity into the model and a
common way is with a Kelvin-Voigt model [24]; however, for
exposition it is not necessary to incorporate all the material
properties as they can be included later.

The internal stiffness can be formulated as:

W int = K(ξ − ξ∗) (11)

where K = diag(EIx, EIy, GJ,GA,GA,EA) is the stiff-
ness matrix with E as the Young’s modulus and G as the
shear modulus. This assumes that the body frame is always
aligned with the principal axes and that only a linear elastic
model is necessary for the body material. Also, ξ∗ is the
strain in the reference configuration. In the case where the
body is initially straight, we have ξ∗ = [0, 0, 0, 0, 0, 1]T .

The distributed external wrench, W̄ ext, comes from the
wrench generated due to the actuators and other external
wrenches, such as gravity. Thus it may be broken down as:

W̄ ext = Ad∗g(W̄ act + W̄ e) (12)

with Ad∗g =

[
RT −RT p̂
0 RT

]
(13)

where the distributed wrenches are defined in the fixed frame
and Ad∗g orients the wrenches in the fixed frame to the body
frame. For example, the gravity wrench would be W̄ e =
ρA[p̂g, g]T , where g is the gravitational acceleration vector.

By rearranging Eq. (4) to solve for the force in an
individual TCA, Fi, we can derive the distributed wrench
for the TCAs in the fixed frame:

W̄ act =

N∑
i=1

[
p̂a,iFi(δi, Ti)t

′
a,i

Fi(δi, Ti)t
′
a,i

]
(14)

where N is the number of TCAs present (in our case N = 3),
δi is the ith TCA’s displacement, ta,i is the unit tangent
vector to the ith TCA and pa,i is the position of the ith TCA.
The unit tangent vector is defined as ta,i = p′a,i/‖p′a,i‖. The

derivative of the tangent vector and the value of the actuator
position can be obtained as:

t′a,i = −
p̂′

2

a,i

‖p′a,i‖3
p′′a,i (15)

pa,i = p+Rri (16)

where ri is the displacement of the ith TCA from the
centerline.

The displacement δi is defined as the arclength of the TCA
minus the original arclength of the TCA:

δi =

∫ L

0

‖p′a,i‖ds− Li (17)

where Li is the original length of the actuator in the reference
configuration, typically Li = L. This δi term is the source of
the coupling between the body and the TCAs as δi depends
on the body deformations and the body deformations depend
on δi because the forces exerted by the TCAs are dependent
on the displacements. Note that δi is only defined over the
entire body and that is the only value that is appropriate to
use in the determination of the force. In order to solve the
dynamics, it is inconvenient to have δi as an integral as we
will want everything in the form of either an ODE in time
or a PDE. To resolve this, we introduce a new variable εi
that will be of the same form as δi except it is defined for
all s:

εi(s) =

∫ s

0

‖p′a,i‖ds−
Li

L
s (18)

Now it is possible to take a derivative with respect to both
s and t to obtain the dynamics equations.

ε′i = ‖p′a,i‖ −
Li

L
(19)

ε̇′i =
p′a,i · ṗ

′
a,i

‖p′a,i‖
(20)

where · is the dot product.
The variable ε̇′i can then be used to solve for δi by being

integrated over t and over s. However, this still doesn’t fully
resolve the issue of δi’s integral dependence as the value
for δi still needs to be known for computing the forces
generated by the TCAs. To resolve this, the value for δi must
be guessed prior to solving the system and then checked if
the guess is correct by computing δi with εi. This forces the
numerical solution to use an iterative solver for the system
(this will lead to an implicit numerical scheme), but this does
not interfere with actually obtaining a solution.

Note that the δi issue just discussed is an artifact of
embedding an actuator in a soft body, causing the defor-
mation of the body and actuator to be coupled. For simpler
actuators this phenomena is not necessary to consider, but
this approach can be generalized for other cases where the
actuation couples with the body deformations.
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Now, the system can be fully expressed of a state vector,
y, defined as

y =


g†

ε′

ξ
η

 (21)

where the † operator represents the extraction of the angle
and position values from the g matrix (g† = [θ,p]T ). The
angles, θ, extracted from g are the X-Y-Z Euler angles.

With the state vector y, the system can be written in terms
of the time derivative for y

ẏ =


(gη̂)†

(gξ̂ri)·(g(η̂ξ̂+̂̇
ξ)ri)

‖ξ̂ri‖
η′ + adξη

Γ−1(W ′
int − ad∗ξW int + W̄ ext + ad∗ηΓη)

 (22)

The system can then be written in function form as ẏ =
f(y,y′, t,T ). In order to solve this system, the boundary
conditions are needed. At the base s = 0 we consider the
fixed frame is attached at the bottom of the centerline and
the manipulator is fixed at the base, thus g(s = 0) = I4,
εi = 0, and η = 0. However, we do not know the value of
the strain at the base. We can establish the strain at the tip
via a balance between the internal stiffness and the TCAs at
the tip cross section. This can be formulated as:

W int = Ad∗g

N∑
i=1

[
p̂a,iFi(δi, Ti)ta,i
Fi(δi, Ti)ta,i

]
(23)

This equation does not have an analytic solution, and due
to the δi dependence of the system, the value for ξ(s = L)
must be recomputed at every iteration. This makes the system
more complex, but it is still fully constrained. Finally, we can
always know the condition of the system at t = 0, and it will
typically be in the reference configuration.

C. Dynamics Numerical Solution

To solve the dynamics, ẏ = f(y,y′, t,T ) we know that it
is necessary to solve the balance of the tip at every iteration
as well as check that εi(L) = δi and thus need an implicit
integration scheme in time. For this, we use the simplest
scheme, the backward Euler method [25]:

y(i+1) = y(i) + ∆tf(y(i+1)) (24)

where the superscripts on y indicate the sequence in time
and ∆t is the time step. This method is implicit because
both sides of the equation depend on the solution of the next
time step’s value of y and must be solved with an iterative
equation solver, which is where the boundary conditions can
be incorporated.

Then we need the values for y′ to be able to substitute
them into the system equation, for this we use a Padé
approximant as its high accuracy reduces the number of
spatial discretization points necessary. The form for this
approximation is [25]:

1

6
(y′i+1 + 4y′i + y′i−1) =

1

2∆s
(yi+1 − yi−1) (25)

where the subscripts represent the ith point in the discretiza-
tion and ∆s is the spatial discretization step. This approx-
imation is 4th-order or has an error proportional to ∆s4.
Since we also have to solve for δi, we use the trapezoidal
rule integration scheme to numerically integrate ε′i at each
time step.

Each step in the solution of the dynamics can be sum-
marized as follows. Guess the values for δi and ξ, then use
the current values of y to approximate the spatial derivatives
with the Padé approximant and compute the time derivatives
for each state variable, integrate ε′i with the trapezoidal rule,
check that the implicit Euler equation is satisfied, that the
wrenches at the tip balance, and that the guessed δi matches
the computed value of εi(L). If these conditions are met,
then a solution is found. If not, update the guesses with a
root finding method and repeat.

III. SIMULATIONS

In this section we simulate the dynamic response of
the soft manipulator with varied voltage inputs. We will
demonstrate the response with constant step inputs, step
inputs that switch half way through the simulation, and
sinusoidal inputs. With the numerical implementation of the
developed models, we can simulate the dynamic responses as
shown in Fig. 3. The parameters for the body are: L = 4cm,
D = 1cm, E = 37.8kPa, ν = 0.5, k = 0.19W/(m · K),
h = 20W/(m2 ·K). For TCAs the coiled length is the same
as the body (4 cm), the twisted length is 13 cm, the number
of coils is 100, the outer diameter is 1.7 mm, the thermal
expansion coefficient is 5e-5 m2/K, and the elastic modulus
is 560 MPa.

Looking at the responses we see fairly intuitive behaviors,
indicating the correctness of the proposed dynamic models.
The thermal profiles (middle row) show a decaying response
to the input voltage. Also, due to the TCAs being embedded
in the same body, each TCA is influenced by the other being
powered. The influence of the input voltage on each TCA
through diffusion of heat will be an important consideration
for control in future developments. The angle profiles (bot-
tom row) show that the manipulator does its quickest motion
at changes in the voltage inputs, which also correspond to
the fastest change in temperature, and has a fairly damped
response to the input afterwards. The angles presented are the
X-Y-Z Euler angles using the fixed frame shown in Fig. 1a.
The right portion of Fig. 3 shows a top view of the tip
position through time for the given dynamic responses. In
this figure, we can see the drift caused by switching the
actuated TCAs and the damped response in the sinusoidal
generated path.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate the modeling of the ther-
modynamics and mechanics of a soft manipulator using
embedded TCAs. To do this, we use standard approaches
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Fig. 3. Left) The simulation results with the voltage input (top row), the thermal response (middle row), and the dynamic response (bottom row) over 30s.
Each column shows the result for a specific case: 1) step voltages applied to two TCAs, 2) one TCA being actuated and then switching to another after
15s, 3) a sinusoidal input to two TCAs. The voltage profiles are step inputs of 3V. The thermal responses show the temperature profiles of the individual
TCAs over time. The plots of the angles show the angle of the manipulator’s tip over time. The angles are rotations in the fixed Y-Z, X-Z, and X-Y plane,
which are also the X-Y-Z Euler angles relative to the fixed frame shown in Fig. 1a. Right) the top view of the tip position of the simulations.

to modeling the thermodynamics of a conductive body and
a dynamic Cosserat rod model with coupling between the
TCAs and the body deformation. The resulting numerical
implementations are then tested, and the results of which give
reasonable and intuitive results for the forward dynamics.
In the future we aim to utilize the developed model for
determining control inputs for manipulators like the one
analyzed and simulated. We will also leverage machine
learning techniques to approximate the dynamics to enable
faster computation speed that is necessary for real-time
control.
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