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Abstract— Soft robots have been intensively investigated for
manipulation and locomotion in recent years. However, the cur-
rent state of soft robotics has significant design and development
work but lags in modeling and control due to the difficulty
in modeling them. In this paper, we present a physics-based
analytical framework to model soft robots driven by Twisted-
and-Coiled Actuators (TCAs), an artificial muscle that can be
arranged in arbitrary shapes in the soft body of a soft robot
to achieve programmable motions. The framework can model
1) the complicated routes of multiple TCAs in a soft body and
2) the coupling effect between the soft body and the TCAs
during their actuation process. When not actuated, a TCA in
the soft body is an antagonistic elastic element that restrains
the magnitude of the motion and increases the stiffness of the
robot. By stacking several modules together, we simulate the
sequential motion of a soft robotics arm with three-dimensional
bending, twisting, and grasping motion. The presented modeling
and simulation approach will facilitate the design, optimization,
and control of soft robots driven by TCAs or other types of
artificial muscles.

I. INTRODUCTION

Soft robots are a new type of robot with deformable bodies
and muscle-like actuation, which are fundamentally different
from traditional robots with rigid links and motor-based
actuators. Owing to their elasticity, soft robots outperform
rigid ones in safety, maneuverability, and adaptability [1].
With their advantages, many soft robots have been developed
for manipulation and locomotion in recent years. Soft robots
have found their uses in a wide number of fields such as med-
ical applications [2] and biologically-inspired locomotion [3].
In these applications, soft robots have been demonstrated to
be resilient and highly adaptable, benefiting applications like
locomotion, gripping, and improved human interactions.

To actuate soft robots, we can use artificial muscles.
Among all the artificial muscles, a low-cost one has recently
emerged: a twisted-and-coiled actuator (TCA), which has
high energy density, and is relatively easy to fabricate [4]–
[6]. Its tendon-like slender shape and compliance of bending
allow us to arrange it in a soft body in an arbitrary shape
to create complicated and programmable motions. Due to
the aforementioned merits, many TCA-driven soft robots has
been developed such as: bending beams [7], soft crawlers [8],
soft bistable gripper [9], shape morphing skin [10], robotics
arm [11], and robotic jellyfish [12].
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Fig. 1. (a) The TCA-driven soft robotics arm picks up a PCB board; (b)
The simulated soft robotics arm.

Despite increasing applications, the current state of arti-
ficial muscle-driven soft robots has significant design and
development work, but lags behind in modeling and simula-
tion due to the complex behavior of the soft bodies, artificial
muscles, and their coupling. Those soft bodies endow soft
robots with infinite degrees of freedom that are significantly
more complex than traditional rigid robots. Modeling such
robots is complicated due to the need of continuum models
of the soft body [13]. Also, it is challenging to model the
coupling between the soft body and the artificial muscle.
The problem can be further complicated by the irregular or
arbitrary routes of these artificial muscles in the soft body.

To address the challenges, we have used Cosserat rod
model that can accurately model continuum robots [14], [15]
to model TCA-driven soft robots [16]. But the previously
proposed method only considered the simplest case where
only a straight TCA is actuated to drive a soft manipulator.
However, the real cases could be more complicated with
one example of a soft robotic arm shown in Fig. 1(a) [11].
The robotics arm has three serially connected modules: a
3D bending module, a twisting module, and a gripper. Our
previous work cannot handle such a robotic arm correctly
[17]. First, when three TCAs are arranged in parallel inside a
soft body, the actuated TCA will need to overcome the antag-
onistic stretching force of the other two unactuated/passive
TCAs, resulting in a much less actuation magnitude. Second,
the twisting module has a TCA arranged in a helical route
and this is usually difficult to model using conventional
simplified methods such as the piece-wise constant curvature
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method. Third, several modules can be combined together to
realized more complicated motions, introducing the coupling
problem between neighboring modules.

To address these issues, we aim to establish a more
general modeling framework using Cosserat rod theory. The
model will consider the actuation and coupling between
multiple TCAs, allow us to simulate complex motion gen-
erated from the irregular routes of the TCAs, and realize
the combination of motions. Our method is different from
some recent research on simulation of shape memory alloy
(SMA) driven robot [18] and musculoskeletal systems [19].
Both of them generate actuation by shifting reference states
of a rod or directly applying general force and moment
on a part of the rod; therefore usually there is no implicit
coupling between a robot and the artificial muscle. Unlike
these works, our method considers the coupling between an
artificial muscle and the soft body, and the implicit artificial
muscles’ forces needed to be solved during the process.
Since these phenomena exist for soft robots driven by other
artificial muscles (e.g., dielectric elastomers, liquid crystal
elastomers), we expect our method can also be used for
modeling and simulating those robots.

The rest of this paper is organized as follows. In Section II,
We introduce the modeling framework for soft robots driven
by TCAs. In Section III, we present the numerical method
to solve a single module and serially connected modules.
In Section IV, the simulation results for a single 3D bending
module and the soft robotics arm are presented. In Section IV,
we conclude the paper and discuss future research directions.

II. ANALYTICAL MODELING

A soft body actuated by TCAs is modeled as a single
Cosserat rod. In this section, we provide a brief overview
of the system of ODEs from a Cosserat rod, and introduce
how to incorporate an external load such as gravity, actuation
force from the artificial muscle, i.e., TCAs, and the coupling
between the artificial muscle and the soft body.

A. Kinematics
In Cosserat theory, bodies are modeled as a collection of

infinitesimal rigid bodies (IRBs) rather than point particles,
and thus each IRB has both position and orientation rather
than just position. For a given rod, we define the centerline,
s ∈ [0, L], as the curve passing through the centroids of
all the cross sections where L is the length of the rod in its
reference configuration. At every point s along the centerline,
we establish a body frame for the cross section. The z axis of
the frame is tangent to s and the x and y axes are assumed to
be aligned with the principal axes of the cross sections. Each
body frame has a rotation and a translation relative to the
global (fixed) frame. We describe the position and orientation
of all the IRBs along the centerline using a homogeneous
transformation matrix g(s) ∈ SE(3).

g(s) =

[
R(s) p(s)

0 1

]
(1)

where R(s) ∈ SO(3) is a rotation matrix and p(s) ∈ R3 is
the position vector.

Fig. 2. A soft body driven by a single artificial muscle and its corresponding
diagram of the kinematics using the Cosserat rod theory. It shows the
centerline s ∈ [0, L] as the blue solid curve, the configuration g, and the
body frame (in red) attached to a cross section.

With g(s), the system of ODEs for the kinematics and
statics can be written as [15]:

g′ = gξ̂ (2)
W i = K∆ξ (3)

W̄ e − adTξW i +W ′
i = 0 (4)

where ′ is the derivative with respect to s, and ξ =
[uT ,vT ]T ∈ R6 is the spatial twist (strain) representing the
relative configuration change between adjacent cross sections
along the centerline, with u,v ∈ R3 the angular and linear
strain component, respectively. The ‘hat’ operator ·̂ is a

mapping from R3 to so(3) or R6 to se(3), e.g., ξ̂ =

[
û v
0 0

]
,

W̄ e =
[
l̄
T
, f̄

T
]T

is the distributed external wrench with
l̄, f̄ ∈ R3 as the moment, force per unit arclength applied to

the centerline in the body frame, adξ =

[
û 0
v̂ û

]
is adjoint

representation of the spatial twist ξ. W i =
[
mT , nT

]T
is the internal wrench in the body frame with m,n ∈
R3 as the internal moment and force in the body frame.
Kbt = diag[EIx, EIy, GJ ] is the diagonal stiffness matrix
for bending and torsion, and Kse = diag[GAt, GAt, EAt] is
the diagonal stiffness matrix for shear and extension. E and
G are the Young’s modulus and shear modulus, respectively.
At is the cross section area of the rod, Ix, Iy are the second
moment of area with respect to x and y axis, and J = Ix+Iy
is the polar moment of inertia of the rod’s cross section about
its centroid.

We decompose (2) into the angular and linear component
to facilitate our numerical simulation using non-unit quater-
nion, and rewrite the system of ODEs using R, p, and ξ as



state variables

R′ = Rû (5)
p′ = Rv (6)

ξ′ = K−1(adTξK∆ξ − W̄ e) + ξ′
∗ (7)

External distributed wrench comes form the artificial mus-
cle and gravity

W̄ e = W̄ grav + W̄ a (8)

where
W̄ grav = ρA

[
03×1
RTgr

]
, (9)

is the distributed gravitational force in the global frame, and
gr = [0, 0, 9.81]T is the gravitational vector. W̄ a is the
distributed wrench due to the artificial muscle TCA’s tension
force.

Note that the TCA-driven soft robots is different from
tendon-driven robots since a TCA has two anchoring points
on the body and the wrench exerted on a robot is considered
as an internal wrench that does not influence the segment
where the TCAs is not embedded as shown in Fig. 2.
Therefore, the initial and distal boundary condition need to
be adjusted as

W i(0) = W i,0 −W a (10)
W i(L) = W a +W ext (11)

where W i,0 is the initial internal wrench if the TCA is
connected to the ground, W a is the sum of point wrench
exerted by TCAs, and W ext is the sum of explicit external
wrench applied to the distal end.

B. TCA Force Mapped to the Rod
A TCA is embedded into a soft body by running through

a channel in the soft body and the channel is created during
the soft body’s fabrication process [11]. The friction force
between the TCA and the soft body is negligible. We assume
that the TCA is able to freely slide in the channels and
the TCA only has axial loads (no bending stiffness). This
derivation is general for any wire artificial muscle.

In the following, we derive the wrench exerted by ith TCA
to the centerline of the rod in the global frame

W g
a,i = Fa

[
p̂ata
ta

]
(12)

where the superscript g indicates that the wrench is repre-
sented in the global frame. Fa is the tension force in the
TCA, pa = Rra + p is the position of the TCA in the
global frame, and ra = [xa, ya, 0]T is the position vector of
the TCA in the body frame. ta =

p′
a

‖p′
a‖

is the unit tangent
vector to the TCA, where

p′a =
∂(Rra + p)

∂s
= R(v − r̂au+ r′a) (13)

To get the distributed wrench, we take the derivative
of (12) with respect to s.

W̄
g
a,i =

∂W g
a

∂s
= Fa

[
p̂′ata + p̂at

′
a

t′a

]
+ F ′a

[
p̂ata
ta

]
(14)

Note that p̂′ata = 0

W̄
g
a,i = F

[
p̂at
′
a

t′a

]
+ F ′

[
p̂ata
ta

]
(15)

Since the balance equation (7) is established in the body
frame. We need to map the distributed wrench and point
wrench back to the body frame using the adjoint transfor-
mation and note that F ′ = 0, p̂a − p̂ = (Rra)̂ = Rr̂aR

T

leading to:

W̄ a,i = AdTg
¯̄W g

a = F

[
r̂aR

T t′a
RT t′a

]
(16)

where AdTg =

[
RT −RT p̂
0 RT

]
is the transpose of adjoint

transformation.
We also need the following to calculate the explicit form

of the cable wrench, and represent it with strains [14]

t′a = − (p̂′a)2

‖p′a‖3
p′′a

p′′a = R(û(v − r̂au+ r′a) + v′ − r̂au′ − r̂′au+ r′′a)

Therefore RT t′a term in Eq. (16) that appears both in moment
and the force term is

RT t′a = −RT (p̂′a)2

‖p′a‖3
p′′a

= Pv′ − P r̂au′ + b− P (r̂′au− r′′a)

(17)

where b = P (û(v − r̂au+ r′a)), P = −RT (p̂′
a)

2

‖p′
a‖3

R

We can split W̄ a and W a into components that do and
do not depend on ξ′

W̄ a,i = Āiξ
′ + B̄i (18)

where

Āi = Fa

[
−r̂aP r̂a r̂aP
−P r̂a P

]
, B̄i = Fa

[
r̂a(b− P (r̂′au− r′′a)
b− P (r̂′au− r′′a)

]
Both Āi ∈ R6×6 and B̄i ∈ R6 are independent of ξ′, but
dependent on ξ. It is simple to use ξ instead of W i as the
state variables because of the dependence of W̄ a on ξ and
ξ′.

The ends of the TCAs are always fixed to the soft body,
typically the ends. In this case, a TCA will exert a of point
wrench due to the tension. This can be written in the body
frame as:

W a,i = AdTgW
g
a,i = Fa

[
r̂aR

T ta
RT ta

]
(19)

If there are n TCAs arranged in the soft body, the total
distributed will be

W̄ a = Āξ′ + B̄ (20)
W a = Σn

i=1W a,i (21)

where Ā = Σn
i=1Āi and B̄ = Σn

i=1B̄i

.
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Fig. 3. The experimental and predicted results of the passive displacement
of a TCA with respect to external force.

C. TCA Model and Coupling to the Rod

The TCA’s displacement and tension force are both cou-
pled to the rod’s deformation. The displacement of a TCA
can be calculated from the positions of the TCA coupled to
the soft body

δa =

∫ L

0

‖p′a‖ds−
∫ L

0

‖(p∗a)′‖ds (22)

where δa is the displacement of the TCA, and this is the
difference of the TCA’s arc length between the current
configuration and the original configuration.

TCAs can be modeled using castigliano’s Second Theorem
(CST) [20]

δa = Acst∆θ̄
h − 1

Kcst
Fa (23)

where ∆θ̄h is the unit untwisting of a twisted fiber used to
fabricate TCAs with respect to temperature. A polynomial
can be used to approximate ∆θ̄h = −0.0161T 2+0.3338T −
7.7311 based on our previous work, and

1

Kcst
= lt

(
r2 cos2 α

GtJt

)
, Acst = ltr cosα

r is the TCA’s diameter, lt is the twisted fiber’s length,
At is the cross section area of the twisted fiber, and α is
the pitch angle of the TCA. Note that based on the small
deformation assumption, all the variables are close to their
values of the reference states, for example, α ≈ α∗. We also
ignored the bending, shear, and extension strain of the TCA
for simplicity.

However, when a TCA is not actuated, it will act as a
nonlinear mechanical spring. Its share modulus Gt gradually
increases with respect to the TCA’s stretching deformation,
resulting in increasing stiffness for a passive TCA. We
conduct experiments to measure the stretching force of a
TCA with its deformation and fit Gt using a 2nd order
polynomial with respect to the TCA’s external force, Gt =
37.58Fa2 + 111.33Fa + 0.85 MPa. With such a fitting,
the predicted passive displacement is pretty close to our
experimental results as shown in Fig. 3.

Combining (22) and (23), we can have an compatibility
equation for the TCA∫ L

0

‖p′a‖ds− l∗ − (Acst∆θ̄
h − 1

Kcst
Fa) = 0. (24)

Plugging (20) in (8) and (7), and rearrange to make ξ′

explicit, we have

ξ′ = (K + Ā)−1(adTξK∆ξ − B̄ − W̄ grav +Kξ′
∗
). (25)

Rearranging (10) and (11), we can obtain

ξ(0) = ξ0 −K−1W a (26)

ξ(L) = K−1(W a +W ext) + ξ∗ (27)

where ξ0 is the initial strain if the TCA is connected to the
ground.

A single module driven by a TCA can be fully defined
by the system of ODEs (5), (6) and (25) with compatibility
equation (24) and boundary condition (26) and (27).

III. NUMERICAL IMPLEMENTATIONS

A. Quaternions as Rotation

Spatial derivative of rotations (R′) is integrated using non-
unit quaternions to avoid truncation error and ensure R ∈
SO(3) [21]. This method allows any high-order integration
scheme or general-purpose ODE solver to efficiently inte-
grate rotations over a long spatial range while eliminating
singularities and maintaining the structure of SO(3). The
basic idea is to replace integration of R′ with the integration
of h′.

A quaternion h = h0 + h1i+ h2j + h3k, where i, j, and
k are called quaternionic units. h can be written in a vector
form in R4: h = [h0, h1, h2, h3]T . Then we can have the
derivative of h with respect to s as [21]

h′ =
1

2
Ωh (28)

where

Ω =


0 −ux −uy −uz
ux 0 uz −uy
uy −uz 0 ux
uz uy −ux 0


ux, uy and uz are elements of u. We can convert R between
h using existing algorithms quat2rotm and rotm2quat in
Matlab.

B. Shooting method Solving Connected Rods

TCA actuation force Fa is an implicit variable that is
required both for the boundary condition and for the ODEs.
A shooting method can be used to solve the boundary
value problem with the unknown implicit force. The method
starts from guessing the initial strain ξ(0) and the actuation
forces Fa for the TCAs using the trust-region-dogleg method.
Then the ODEs are integrated from s = 0 to s = L
using a standard library code (e.g., ode45 in Matlab), during
which the distributed wrench and point wrenches will need
to be calculated. Finally, the boundary conditions and the
compatibility equation are checked. If the a residual error
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ε as in (29) is within specified tolerance, the algorithm
stops and returns the results, otherwise new guess values
will be generated and the process repeats until the boundary
conditions and the compatibility equations are satisfied.

ε =

[∫ L

0
‖p′a‖ds− l∗ − (Acst∆θ̄

h − 1
Kcst

Fa)

K−1(W a +W ext) + ξ∗

]
(29)

If two or more rods are serially connected, a piece-wise
integration needs to be implemented to solve them together
as shown in Algorithm 1. For this case, we only guess the
very first rod’s initial condition to make sure that the very
last rod’s distal boundary condition and the compatibility
equation for each TCA are satisfied.

Algorithm 1: Solving serially connected modules
Input: Temperature vectors of the TCAs
Initiate parameters;
Setup Initial boundary conditions g0;
for T = T 0 → Tmax do

while ε > Tol do
Guess ξ0 for the first rod;
Adjust the initial boundary Eq. (26);
Integrate the first module Eqs. (5), (6) and

(25);
Adjust the distal boundary condition to

include point forces Eq. (27);
Use the distal boundary of first module as the

initial boundary condition of the second
module;

Adjust the initial boundary Eq. (26);
Integrate the second module Eqs. (5), (6) and

(25) ;
Return the error of the compatibility equations

of all TCAs, and the distal boundary
condition of the second module Eq. (29).

end
Visualization;

end

IV. RESULTS

We use the 3D bending module and the soft robotics arm
as examples to illustrate the simulation of a single module
and serially connected modules. We use Young’s modulus
E = 0.125 MPa and G = E/3 for the soft body made of
Ecoflex-30 (Smooth On Inc.). The 3D bending module and
twisting module are simplified as a rod with circular cross
section that has a diameter of 4.5 mm. The gripper’s cross
section is a rectangular shape of 3× 6 mm.

A. Simulation of a Single 3D Bending Module

The 3D bending module has three TCAs located 4 mm
from the center at the angle of 0, 120, and 240◦ as shown
in the inset of Fig. 4. The length of the soft body and
the TCA is 45 mm. We simulate the case that TCA 2 and
3 are actuated, and TCA 1 serves as a passive TCA that

Fig. 4. The comparison between the cases with and without considering
the antagonistic forces from the passive TCAs. The inset shows the cross
section of the 3D bending module and the actuated TCAs.

Fig. 5. The displacement of the 3D bending module with respect to a
horizontal force demonstrating the variable stiffness function of the module.
The inset shows the direction diagram of the applied force on the module.

generate antagonistic forces. Figure 4 shows that the bending
magnitude without considering the passive TCAs is more
than 40% larger than the case considering the passive TCAs’
antagonistic forces. The error could be even larger when a
stiffer material is used or the module has different geometry
parameters. The results suggest that antagonistic force cannot
be ignored if multiple TCAs are embedded in the module.

With this model, we can also simulate the variable stiffness
effect of the 3D bending module when all three TCAs
are equally actuated at the same time. Figure 5 shows the
displacement of the module with respect to a force along
x direction. When the temperatures of the 3 TCAs are
increased from 75 to 125 ◦C, the same amount of force can
cause much less displacement.

B. Simulation of the Soft Robotics Arm

The soft robotics arm shown in Fig.1 is realized by serially
stacking a twisting module and a gripper (pre-curved 2D
bending module) on the top of the 3D bending module. The
TCA in the twisting module is wrapped on a soft cylinder
(16 mm) in a helical shape located 3.5 mm from the center.
There are total 5 rounds of TCAs and the two ends of the
TCA is fixed on the cylinder. The gripper has a circular body
shape and is normally closed, which means When the TCA



Fig. 6. The simulation of a pick-and-place process of the soft robotics arm. The red and green lines represent the active and passive TCAs, respectively.
The centerlines of the soft bodies are represented by the thicker black lines. The blue lines illustrate the cross sections of the 3D bending module. (a) The
initial straight configuration. The object is 10 mm under the gripper. (b) The twisting module rotates the gripper to align it with the object. (c) The gripper
opens. (d) The arm is lowed and the gripper closes to pinch the object. (e) The arm lifts the object. (f) The twisting module is deactuated to rotate the
gripper to its original orientation. (g) The bending module bends to x direction, and the gripper opens again to release the object to a different location.

contracts, the gripper can open it self. Therefore it holds
objects when the TCA is not actuated and the TCA is located
2.5 mm from the center of the gripper’s cross section.

Due to the small size of the gripper, only the 3D bending
module and the twisting module are treated as serially
connected modules that are solved together. The weight
of the gripper and the object grasped by the gripper are
considered as an external load that can be mapped to the
tip of the twisting module.

Figure 6 shows the simulation of the robotics arm that
conducts a pick-and-place task. First, the robotics arm is at
its initial straight configuration. Then the twisting module
rotates the gripper to allow it to align with the object. The
gripper opens to pinch the object. The 3D bending module
bends to the desired direction, and then the object is released
by the gripper.

V. CONCLUSIONS

In this paper, we use TCA-driven soft robots as an example
to present a general analytical model using Cosserat rod
theory for soft robots driven by an artificial muscle. The
model solves the coupling implicit force of the artificial
muscles with deformation of the soft body, and considers
the antagonistic force of passive artificial muscles. The
simulation scheme for serially connected modules is also
presented for simulating more general and complicated cases.

For future work, we will 1) conduct experiments to study
the accuracy of the model; 2) include other examples that a
different artificial muscle (e.g., shape memory alloy wires,
pneumatic actuators) are used to verify the generality of the
framework; 3) improve the computational efficiency of the
framework; 4) expand the statics model to the dynamics.
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