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Physics-Based Modeling of Twisted-and-Coiled
Actuators Using Cosserat Rod Theory

Jiefeng Sun , Student Member, IEEE, and Jianguo Zhao , Member, IEEE

Abstract—Twisted and coiled actuators (TCAs) have recently
emerged as a promising artificial muscle for various robotic ap-
plications because they are strong, low cost, and customizable. To
better facilitate the applications, it is critical to establish general
and precise models for different types of TCAs (e.g., self-coiled,
free-stroke, conical, etc.). Although several modeling methods have
been proposed recently, existing models either fail to capture the
nonlinearity during large deformations or cannot model TCAs
with nonuniform geometries. In this work, we establish a general
framework for modeling TCAs using Cosserat rod theory that
can capture the nonlinearity of large deformations and simulate
TCAs with nonuniform geometries. Furthermore, we show existing
methods are special cases of our general model. Comprehensive
statics and dynamics experiments are conducted to verify the
proposed model, and the results demonstrate that the model is
more accurate than existing ones, especially when a TCA is subject
to large deformations. Given the wide applications of TCAs, our
general model can help to better design, optimize, and control
systems/robots/devices driven by different types of TCAs.

Index Terms—Artificial muscle, Cosserat rod theory, statics and
dynamics, twisted-and-coiled actuators (TCAs).

NOMENCLATURE

rt Twisted fiber radius.
lt Length of the twisted fiber.
αt A twisted fiber’s bias angle.
E Twisted fiber’s longitudinal Young’s modulus.
G Twisted fiber’s longitudinal shear modulus.
r Radius of a TCA.
nt Number of twists in the twisted fiber.
n Number of the TCA’s coils.
φ Winding angle of the TCA φ = 2πn.
l Length of the TCA.
α The coil pitch angle of the TCA.
M e External moment vector applied at the boundary.
F e External force vector applied at the boundary.
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A Coil kinematic coefficient.
Kc Coil Stiffness coefficient.
s Arc length of a twisted fiber.
t Time.
p Position vector in the global frame.
R Rotational matrix of material cross section.
h Quaternion for the material cross section.
u Angular strain in the body frame.
v Linear strain in the body frame.

ξ Spatial twist ξ =
[
uT ,vT

]T
in the body frame.

m Internal moment in the body frame.
n Internal contact force in the body frame.

W Internal wrench W i =
[
mT ,nT

]T
in the body

frame.
f̄ Distributed force in the body frame.
l̄ Distributed moment in the body frame.
W̄ e Distributed external Wrench applied to the centerline

in the body frame W̄ e =
[
l̄
T
, f̄

T
]T

.

Δ(·) Change of the variable with respect to the state
defined by the superscripts.

(·)∗ Variables corresponding to the original reference
state.

(·)h Variables corresponding to the heated reference
state.

(·)′ Derivative with respect to s, ∂
∂s .

˙(·) Derivative with respect to time, ∂
∂t .

(̈·) Second derivative with respect to time, ∂2

∂t2 .

·̂ or (·)̂ Mapping from R3 to so(3) or R6 to se(3), e.g., ξ̂ =[
û v
0 0

]
, û =

⎡⎣ 0 −uz uy

uz 0 −ux

−uy ux 0

⎤⎦.

∨· or (·)∨ Inverse of ·̂ or (·)̂.

I. INTRODUCTION

TWISTED-and-coiled actuators (TCAs) have recently
emerged as a promising artificial muscle [1]–[3], exhibit-

ing several unique advantages compared with other types of
muscles (e.g., dielectric elastomers, shape memory alloy, liquid
crystal elastomer, etc.). They can be conveniently fabricated
by continuously twisting polymer fibers into coiled spring-like
shapes. They are low cost since the polymer fibers required
for fabrication can be commonly used household fibers (e.g.,
sewing threads or fishing lines). They have a large work density
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TABLE I
COMPARISONS BETWEEN EXISTING MODELS FOR TCAS

CTE: Coefficient of thermal expansion; d.n.: depending on; CST: Castigoliano’s second theorem.

Fig. 1. Photos of three types of TCAs made of conductive sewing threads.
(a) Self-coiled TCA. (b) Free-stroke TCA. (c) Conical TCA.

(27.1 kW/kg), capable of lifting more than 1000 times their own
weight [1]. They can be directly actuated by electricity with a
small voltage (a few volts) [4]. They can also sense their own
deformations through the change of electrical properties (e.g.,
resistance) [5]–[7].

Besides the advantages, TCAs can also be fabricated to have
different configurations (see Fig. 1) such as self-coiled, free-
stroke, and conical. Generally, TCAs are fabricated through a
two-step process. The first step is the same: twisting a polymer
fiber to generate a twisted fiber, whereas the second step differs:
using the twisted fiber to generate a coiled shape. Self-coiled
TCAs [see Fig. 1(a)] are fabricated by self-coiling in the second
step. Such TCAs can produce large forces but have relatively
small strokes (around 10% to 20%) and normally require pre-
stretch before usage [1]. Free-stroke TCAs [see Fig. 1(b)] are
fabricated by coiling a twisted fiber along a mandrel with he-
lical grooves in the second step. They can provide moderate

actuation forces with relatively large strokes (>50%) without
prestretch [8], [9]. Conical TCAs [see Fig. 1(c)] are fabricated
by coiling a twisted fiber along a conical mandrel. They can
generate weak forces but with large, even dual-side strokes when
the coils pass each other [10].

Due to TCAs’ merits and wide customizabilities, they have
been recently used in many robotic systems, either rigid or
soft/compliant ones. Rigid systems include the following: an
assistive wrist orthosis [11], fingers/hands [12]–[14], a muscu-
loskeletal system [15], a joint mechanism [16], and morphing
linkages [17]. Soft/compliant systems include the following:
bending beams [18], soft crawlers [19], [20], soft robotics
arms [9], soft skin [21], shape morphing skin [22], and robotic
jellyfish [23].

To better design, optimize, and control TCAs for various
applications, it is critical to establish precise models for TCAs.
A list of existing models are presented in Table I. We are
particularly interested in physics-based models based on TCAs’
physical parameters as opposed to system identification meth-
ods [13], since such physics-based models are expected to be
more general. Although some of the existing physics-based
models can provide enough accuracy for special types of TCAs
(e.g., self-coiled ones), a general model for different types of
TCAs (self-coiled, free-stroke, conical) is still missing. In the
following, we briefly review pioneering works and discuss their
limitations.

A. State-of-the-Art for TCA Modeling

As shown in Fig. 2, the existing modeling of TCAs can
be divided into two sequential models: a thermal model and
a mechanical model. The thermal model first solves a TCA’s
temperature given the input power, and then the mechanical
model takes the temperature and external forces to solve the state
of the TCA (displacement, velocity, and acceleration, etc.).

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 10,2022 at 14:47:40 UTC from IEEE Xplore.  Restrictions apply. 



SUN AND ZHAO: PHYSICS-BASED MODELING OF TWISTED-AND-COILED ACTUATORS USING COSSERAT ROD THEORY 781

Fig. 2. Schematic for the modeling overview. The input is the input power and the external force, and the output is the TCA’s displacement. The whole TCA
model is boxed with black dashed lines, and the mechanical model is boxed by red dashed lines. The mechanical model can be a TCA statics or TCA dynamics.

For the thermal model, the most common ones treat a TCA as
a single body with a uniform temperature. This model considers
the natural convection in the air as only energy dissipation, and
the heat source is Joule heating from electricity [13], [25]–[27],
[29], [30]. Besides the common ones, some models consider
a more complicated process. Masuya et al. [34] included the
radiation and the heat generated from damping to the model.
Karami et al. [32], [35] assumed the resistance of TCAs made
of conductive sewing thread changed with respect to temperature
linearly.

For the mechanical model, we divide it into three submodels
according to the working principle of TCAs (see Fig. 2). As the
temperature increases, the twisted fiber in a TCA will untwist.
A fiber actuation model predicts the amount of untwisting with
the temperature as an input. With the untwisting, a coil kine-
matic model converts the untwisting to a linear displacement
along the TCA. Since a TCA has a spring-like helical shape,
we need a coil static model to predict a TCA’s passive defor-
mation under an external load. The coil kinematic and static
model, often coupled, together are called a coil kinetostatic
model.

For the fiber actuation model, there exist extensive works on
modeling the untwisting of monofilament fibers, such as fishing
lines using a single-helix model by assuming all the polymer
chains in the fiber behave the same like a single helix [36].
However, the actuation of multifilament fibers (sewing threads)
is underexplored due to the complicated twisting structure inside
them. For instance, a conductive sewing thread (e.g., 235/34
4ply, Shieldex Trading) consists of four plies of individual yarns
twisted together in a “z” twist (right-hand twist), and each yarn is
made by twisting many thin fibers together in “s” twist (left-hand
twist).

For the coil kinematic model, there exist three methods. The
first method is based on system-identification [13], [25]–[28].
But instead of measuring how much a TCA contracts after in-
creasing temperature, the contraction force is usually measured.
The other two methods are physics-based: Castigliano’s second
theorem (CST) [24], [29] and Love’s equation [4], [10], [31],
[37]. CST, based on the infinitesimal strain theory, is usually
used to calculate the deformation of a structure under an external
load. By considering the untwisting torque of a twisted fiber as
an external load, CST can relate the untwisting to a TCA’s linear
displacement. Love’s equation is a pure kinematic relationship
that relates the untwisting of a twisted fiber to a TCA’s pitch

angle and thus its displacement. Note that Knot theory results in
the same kinematic relationship as Love’s equation as discussed
in [10].

For the coil static model, a TCA’s passive deformation can be
determined from its stiffness if we treat the TCA as a mechanical
spring. Researchers have used: 1) a constant stiffness obtained
from experiments [13], [25]–[27], [38]; 2) a constant stiffness
calculated using the classical formula [39] for a helical spring as
in [31]; 3) stiffness that varies with deformations [24], [29], [32],
[35]. Such nonlinear stiffness has been modeled using CST, but
no work uses Love’s equation.

Although various models have been proposed recently, they
are limited in two aspects. First, they are not general enough
for different types of TCAs, as shown in Fig. 1. In fact, most
of the existing models are only developed for a specific type
of TCAs, and there is no existing model that is verified to be
able to model different types of TCAs. Second, existing models
are not accurate enough due to modeling simplifications. For
example, the CST method is based on the infinitesimal strain
(small deformation) theory, and the Love’s method ignores the
shear and extension strain for the twisted fiber, making them
inaccurate when TCAs undergo large deformations.

B. Our Work and Contributions

In this work, we present a general physics-based modeling
approach to model a TCA’s statics and dynamics based on
the Cosserat rod theory. Cosserat rod theory can accurately
model slender rods, including twisted fibers, by considering four
strains (torsion, bending, shear, and extension). As a topic in
solid mechanics [40], [41], it has been recently adapted to the
robotics community to model tendon-driven and fluid-driven
compliant/soft robots [42]–[44].

Our proposed model based on Cosserat rod theory is both
more accurate and more general compared with existing models.
It is more accurate because of the following reasons:

1) it is geometrically exact: no approximation of small de-
flection is assumed;

2) it considers all four strains;
3) it can include nonlinearity of material such as temperature

and strain dependency.
It is also more general because it can model different types

of TCAs with different shapes that cannot be modeled using
existing models. In fact, we show that existing models using
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Fig. 3. (a) Schematic for the thermal model. (b) Schematic for the fiber actuation model. The green cylinder represents a twisted fiber. The red helix is a monofiber
with a constant length lf . (c) Experimental and fitted results of the unit untwist of the twisted fiber with respect to temperature.

Love’s equation and CST are simplified cases of our model.
Because of the better generality and accuracy, we expect our
model can be widely used for the design and optimization of
TCA-actuated devices/systems/robots.

The rest of this article is organized as follows. In Section II,
we present the thermal model and the fiber actuation model.
In Section III, we introduce the Cosserat rod model for coil
kinetostatics. In Section IV, we show the results using Love’s
equation and CST are special cases of our model based on
the Cosserat rod theory. In Section V, the experimental setup
and numerical simulations are introduced. We then compare the
simulation and experimental results. In Section VI, we briefly
discuss the modeling approach and point out future directions.
Section VII concludes this article.

II. THERMAL MODEL AND FIBER ACTUATION MODEL

TCAs made of conductive threads are used in this work since
they can be directly actuated using electricity and respond much
faster than TCAs made of fishing lines wrapped with heating
wires. Therefore, our modeling framework starts with a thermal
model to obtain a TCA’s temperature given input power, and then
a fiber actuation model to predict the amount of fiber untwisting
from the temperature increase for the twisted fiber in a TCA.

A. Thermal Model With a Time-Varying Input

For TCAs made of conductive threads, their electrical resis-
tance strongly depends on the loading condition and changes
over the actuation process (∼ 20%) [7]. Therefore, we cannot
assume a constant resistance for modeling. In this case, we
directly use the time-varying input power as the real-time input
of the thermal model to achieve a better accuracy.

As shown in Fig. 3(a), the 1-D thermal diffusion equation is

mtcpṪ = −hcsA0(T − T∞) + Pin (1)

where T is a TCA’s temperature, ˙ represents the derivative with
respect to time, mt is the weight of the TCA, cp is the specific
heat, T∞ is the ambient temperature, h is the natural convection
coefficient, and the method to determine h is described in the
Appendix. A0 = 2πrtlt is the surface area of the twisted fiber
without considering roughness, with rt and lt the diameter and
length for the twisted fiber, respectively. cs = 2.5 is used to

adjust the surface area due to its roughness (see Fig. 1). In fact,
a twisted thread is made of infinite many yarns twisted together,
each yarn is made of infinite many thin fibers, and each fiber
has a circular cross section. In this case, the outer surface area
is scaled up twice, and the scaling factor for each scaling is
π/2, which is the ratio between half perimeter of a circle to
its diameter. We calculate h from experimental data using the
regression method after cs is determined. Pin is the power input
into the TCA that is directly monitored in a control circuit using
a sensor (details in Section V-D3). With the initial condition
as T (0) = T0 = T∞, (1) can be numerically solved using an
ordinary differential equation (ODE) solver in MATLAB (e.g.,
ode45).

B. Fiber Actuation Model

After the temperature for a TCA is known, we can solve the
amount of untwisting for the twisted fiber in the TCA due to
thermal expansion. Such untwisting happens since the twisted
fiber expands much more in the radial than the longitudinal
direction. Therefore, given a temperature input, we first find
the radius of the twisted fiber resulted from radial expansion,
and then use the radius to solve the amount of untwisting.

The twisted fiber’s radius rh
t after heating is an integra-

tion of the coefficient of thermal expansion (CTE) in radial
direction α⊥

rh
t = r∗t

(∫ T

T0

α⊥dT + 1

)
(2)

where r∗t and rh
t are the radius at temperature T0 and T , respec-

tively. Denote the ratio between rh
t and r∗t as Γ(T ) = rh

t /r
∗
t =∫ T

T0
α⊥dT + 1. Note that α⊥ is not a constant and strongly

depends on the temperature [45]. In the rest of this article, we
will use a superscript * to represent the variable in the original
reference state (ORS) when no heat and no load is applied,
which are fixed parameters that can be measured; we use a
superscript h to indicate the variables are corresponding to the
heated reference state (HRS) when the heat is applied but no load
is applied. For example, r∗t and rh

t are the twisted fiber’s diameter
at the ORS and HRS, respectively. The variables without the
superscript represent a general state when a force is applied
and/or when the temperature is increased.
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To obtain the amount of untwisting from the fiber’s radius
expansion, we use a single-helix model [46]. The model assumes
the monofilaments in a twisted fiber form the same helical shape
like one single helix wrapped on a cylinder that will expand in
the radial direction, as shown in Fig. 3(b). The helix satisfies

l2f = (rh
t θ)

2 + l2t (3)

where lf is the length of the original fiber before twisting, lt is
the length of the helix (the twisted fiber), θ is the total twisting
angle: θ = 2πnt with nt the number of twists inserted into the
twisted fiber.
lf and lt can be assumed to be constant since they remain

almost the same when the fiber’s temperature increases [46].
Therefore, rh

t θ will keep constant: rh
t θ = r∗tθ

∗. Denote the
amount of untwisting due to heat as Δθh, we can obtain
Δθh = θh − θ∗ = θ∗(r∗t/r

h
t − 1). Further denote the amount of

untwisting per unit length as Δθ̄h = Δθh/lt, we have

Δθ̄h =
θ∗

lt

(
r∗t
rh
t

− 1

)
=

θ∗

lt

(
1

Γ(T )
− 1

)
. (4)

From (4), we can obtain Δθ̄h from the radius ratio Γ(T ),
which is challenging to model. Therefore, we use a second-order
polynomial c2T 2 + c1T + c0 to approximate Γ(T ) and experi-
mentally obtain the coefficients ci (i = 0, 1, 2) by directly mon-
itoring the amount of untwisting for a twisted fiber. Specifically,
we first anneal the same twisted fiber for fabricating TCAs as
shown in Fig. 1 in a straight shape with two ends fixed in an
oven (more details in Section V-A). The straight twisted fiber is
then hanged in an oven, and a 1 g weight is attached at its end
to keep the fiber straight. When the oven is gradually heated,
a camera is used to capture the fiber’s untwisting through the
oven’s transparent window and a thermal sensor is used to record
the temperature. Fig. 3(c) shows the unit untwist with respect
to the temperature and the approximation using a second-order
polynomial with c0 = 3.5× 10−6, c1 = −6.7× 10−5, c2 = 1
that provides enough accuracy with an MSRE = 4.1 rad/m,
which is 2.3◦ for a twisted fiber with a length of 1 cm.

With the experimentally obtained Γ(T ), we can derive the
amount of untwisting given a temperature for the twisted fiber
using (4). This amount of untwisting is used as an input for the
coil kinetostatic model in the following section.

III. KINETOSTATIC MODEL USING COSSERAT ROD THEORY

The Cosserat rod model can be used to formulate a balance
equation between the external wrench (force and moments) and
the internal wrench on the twisted fiber in a TCA. In this section,
we establish the system of equations of the Cosserat rod model
for the kinetostatics of a TCA, derive the moduli of a twisted
fiber as a function of temperature and strain, obtain the reference
configurations required for numerical implementations, and es-
tablish a simplified dynamics equation for TCAs.

A. Cosserat Rod Kinetostatic ODEs

The twisted fiber in a TCA can be considered as a slender rod
as shown in Fig. 4(a), and the Cosserat rod model [40] assumes
the rod is composed of infinitely many rigid cross sections along

Fig. 4. Schematic for the Cosserat rod model (a) Loading condition of the
TCA. The top end is fixed (fixed end), and a force Fe and a moment Me are
applied at the bottom end. (b) Arbitrary section of rod [the red box in (a)] from
s = sa to s = sb subjects to distributed forces f̄ and moments l̄. The internal
forces n and moments m are also shown.

the rod’s centerline defined as the curve passing through the
centroids of all the cross sections. We use arc length s ∈ [0, lt]
to denote the location of a cross section along the centerline.

We establish a global (fixed) frame (OXY Z) located at the
center of the TCA’s fixed end. As shown in Fig. 4(b), we
also establish a body frame (oxyz) for a rigid cross section
at s with o located at the centroid, z direction along the rod’s
tangent direction, and x, y aligned with the principal axes of the
cross section. The orientation of the body frame with respect
to the global frame can be represented as a rotational matrix
R(s) ∈SO(3), whereas the position of o in the global frame can
be represented as p(s) ∈ R3. With R(s) and p(s), we use a
homogeneous transformation matrix g(s) ∈ SE(3)

g(s) =

[
R(s) p(s)

0 1

]
(5)

to represent the orientation and position of a rigid cross section
at s in the global frame.

With the notation in [43], the kinematics of a TCA as a
Cosserat rod is g′ = gξ̂, where ′ is the derivative with respect to s,
andξ = [uT ,vT ]T ∈ R6 is the spatial twist (strain) representing
the relative configuration change between adjacent cross sec-
tions along the centerline, with u ∈ R3 and v ∈ R3 the angular
and linear strain component, respectively. The superscript “T ”
denotes the transpose of a matrix. The “hat” operator ·̂ is a
mapping from R3 to so(3) or R6 to se(3), e.g., ξ̂ = [ û0

v
0 ].

We decompose g′ = gξ̂ into the angular and linear component
to facilitate our numerical simulation using nonunit quaternion
(detailed in Section V-B1)

R′ = Rû

p′ = Rv.
(6)
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A complete summary of variables and operators is given in the
Nomenclature.

The statics equation for an arbitrary cross section of the rod
as shown in Fig. 4(b) is

W̄ e − adTξ W +W ′ = 0 (7)

where W̄ e =
[
l̄
T
, f̄

T
]T

is the distributed external wrench

with l̄, f̄ ∈ R3 as the moment, force per unit arclength applied
to the centerline in the body frame, adξ = [ ûv̂

0
û ] is adjoint

representation of the spatial twist ξ. W = [mT , nT ]T is the
internal wrench in the body frame with m,n ∈ R3 as the
internal moment and force in the body frame.

To relate the kinematic (6) and statics (7), we can use a
constitutive law to relate the internal wrench W and the change
of spatial twist Δξ = ξ − ξ∗, where ξ∗ = [u∗T , v∗T ]T is the
twist in ORS. The change of strains can be caused by the internal
forces and moments. For instance, the change of torsional strain
uz − u∗

z , where uz is the third element of u, can be caused by
the moment about the z-axis of body frame. More generally, we
have the following constitutive law:

W = KΔξ (8)

where

K =

[
Kbt 0

0 Kse

]
.

Kbt = diag[EI,EI,GJ ] is the diagonal stiffness matrix for
bending and torsion, and Kse = diag[GAt, GAt, EAt] is the
diagonal stiffness matrix for shear and extension.E andG are the
longitudinal Young’s modulus and shear modulus for the twisted
fiber, respectively. At is the cross section area of the twisted
fiber, I = Ix = Iy = πr4t /4 is the second moment of area, and
J = Ix + Iy is the polar moment of inertia of the twisted fiber’s
cross section about its centroid. A detailed derivation for (8) is
in the Appendix.

Equations (6)–(8) establish the kinetostatics of a TCA to-
gether with boundary conditions (the external wrench, e.g., a
weight hanging at the TCA’s end), creating a boundary value
problem (BVP) that can be numerically solved. The actuation
of the TCA is realized by replacing u∗ in (8) with uh that
can be calculated with the increase of the temperature T (see
Section III-C). Detailed numerical implementations will be
presented in Section V-B. An animation of TCA simulation
can be found in our supporting video. The detailed derivation,
source code, and supporting video for this article are summarized
online.1

B. Temperature and Strain Dependent Moduli

The moduli (E and G) of a twisted fiber vary with the tem-
perature and external loads. If such variations are not modeled,
we cannot simulate a TCA’s response accurately, especially
when external loads are large and the temperature is high. To
model such variations, we first calculate the moduli at room

1[Online]. Available: at https://jiefengsun.github.io/tca-tro.html

temperature based on yarn mechanics, and then incorporate the
influence of temperature and load.

Moduli of a twisted fiber depend on three parameters of the
twisted fiber: the pitch angle αt, the volume friction Vf , the
yarn’s (monofilament fiber’s) tensile modulus Ef [47]

E =
3VfEf

4

(1 + cos2 αt)

1 + cosαt + cos2 αt
(9)

G = EfVf/

(
π(1− cosαt) sinα

3
t

6(αt/2− 1/4 sin(2αt))2

+
8sin3 αt

3π(1− cosαt)(cosαt + 1)2

+
π(4− 3 cosαt − cos3 αt)

6(αt/2− 1/4 sin(2αt))(cosαt + 1)

)
.

(10)

Among these three parameters, αt and Vf can be considered
as constants after the annealing process, and they can be ex-
perimentally obtained. For αt, we can directly obtain it from
microscopic photos. For Vf , we obtain it indirectly by using
(9) with the values of E and Ef at room temperature. E at
room temperature is measured to be 1.2 GPa by stretching an
annealed twisted fiber.Ef at room temperature is directly chosen
to be Ef0 = 3.9 GPa, which is the Young’s modulus of Nylon
6,6. With E and Ef at room temperature, we solve Vf = 0.35
using (9).
Ef varies with both external loads and temperature, especially

when the load and temperature are large [32], [48]. In our previ-
ous work [29], we have considered how Ef will vary with tem-
perature alone: Ef decreases by 0.0011 GPa per Celsius degree.
In this work, we also consider the influence of the external load
by using a second order polynomial (λ = μ2τ

2 + μ1τ + μ0).
Therefore, we have

Ef = Ef0 − 0.0011ΔT (μ2τ
2 + μ1τ + μ0) (11)

where ΔT = T − T0 is the change of temperature, τ = Fer
GJ is

the torsional strain caused by an external force Fe along the
TCA, as shown in Fig. 4(a). Since we do not know the exact G
before we calculate τ , we take the value ofG at room temperature
G0 = 0.22GPa to calculate τ for a specific load. The coefficients
for λ, μ2 = 3.24× 10−4, μ1 = −0.027, and μ0 = 1, are fitted
using the displacement-force relationship at high-temperature
and high-load condition (see Appendix for more details).

With (9)–(11), E and G can be expressed in terms of the
temperature and an external force. G is used as an example to
illustrate how the modulus will change. We consider the case
when we hang a weight at the end of a TCA. We can plot G
with respect to temperature and the weight in Fig. 5. G will
decrease more than 13% when the temperature and weight both
reach a large magnitude. Although we plot G with respect to
weights for more intuitive illustrations, it is more general for
the moduli to depend on the torsional strain (τ ) than the external
force produced by hanging weights, since even the same hanging
weight at the ends of two TCAs made of the same twisted fiber
will cause different torsional strains on the twisted fiber if the
two TCAs have different outside diameters.
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Fig. 5. Change of the shear modulus G with respect to the temperature and
hanging weight for a free-stroke TCA fabricated as in Section V-A.

C. Reference Strain and Boundary Conditions

To numerically implement the model, we need to obtain the
reference strains and the boundary conditions for the two ends.
Recall that we define the following two types of reference states:
1) a TCA’s ORS when no load and no heat is applied; 2) an
HRS when the heat is applied but no load is applied. We use a
superscript ∗ and h to represent ORS and HRS, respectively. For
instance, a TCA may initially have an ORS strain ξ∗ when no
load and heat is applied, but when the heat is applied, ξ∗ will be
shifted to an HRS strain ξh.

Here, we use a right-handed TCA as an example to obtain the
references, and the derivation for a conical TCA is discussed in
the Appendix. The derivations are also implemented using MAT-
LAB Symbolic Toolbox, and the source code can be found at
https://github.com/jiefengsun/TCA-TRO . The TCA is hanged
by fixing its top, and the global frame’s origin O is established
at the top of the TCA, as shown in Fig. 4(a). Z direction is along
the axis of the TCA. In the following, we will obtain the relative
position and orientation for a cross section in the twisted fiber
with respect to the global frame [i.e., frame oxyz with respect
to frame OXY Z in Fig. 4(b)].

The position vector p∗(s) in ORS can be parameterized using
arc-length as

p∗(s) =
[
r∗ cosφ, r∗ sinφ, s sin(α∗)

]T
(12)

where φ = 2πn = s cosα∗/r∗ is the coiling angle, n is the
number of coils, r∗ is the radius of the coil, and α∗ is the pitch
angle in ORS.

The rotation matrix R∗(s) in ORS can be also parameterized
using s through consecutive frame transformations, as shown in
Fig. 6

R∗(s) = Rz(π − φ)Rx

(
−π

2
− α∗

)
(13)

where Rx, Rz are, respectively, basic rotation matrices that ro-
tate frames about the x-, z-axis by an angle using the right-hand
rule. Note that post multiplication is used (rotation with respect
to the current body frame) and the final z orientation of the body
frame is always along the tangent direction of the twisted fiber. A

Fig. 6. Steps to obtain the rotational matrix R∗(s). (a) Top view for the first
step rotating around z for π − φ. (b) View for the second step looked from the
arrow direction in (a). Rotate around x for −π

2 − α∗ with respect to the body
frame. Signs of the rotation angles are determined using the right-hand rule.

3-D animation of the body frame moving along a helix is shown
in the supporting video.

With p∗(s) and R∗(s), we can then obtain the ORS strain u∗

and v∗ from (6)

u∗(s) = (R∗TR∗′)∨ =
[
0, κ∗, τ ∗

]T
v∗ = R∗Tp∗′ = [0, 0, 1]T

(14)

where κ∗ = cos2 α∗/r∗, τ ∗ = sinα∗ cosα∗/r∗ are the geomet-
ric curvature and torsion of the helix. Note that v∗ does not vary
with geometry parameters.

When heated, the twisted fiber untwists, the ORS strain is
shifted to the HRS strain by adding the influence of untwisting
to the geometric torsion

uh(s) =
[
0, κ∗, τ ∗ +Δθ̄h

]T
, vh = v∗. (15)

Note that Δθ̄h changes with respect to temperature T ; therefore,
uh is a function of T . In the simulation, uh is iteratively updated
based on T to incorporate the thermal actuation.

After solving the reference strains, we can solve the boundary
conditions. We first derive the boundary condition for the fixed
end of a TCA, whose centerline is along the global Z-axis. We
will then discuss the boundary conditions for the free end with
an external load applied on it.

The boundary condition for the fixed end (s = 0) can be
solved from (12) and (13)

p0 = p∗(0) = [r∗, 0, 0]T

R0 = R∗(0) =

⎡⎢⎣−1 0 0

0 sin (α∗) − cos (α∗)
0 − cos (α∗) − sin (α∗)

⎤⎥⎦ .
(16)

The boundary condition for the free end with an external
wrench W g

e (superscript “g” means it is in the global frame)
at s = lt is

W (lt) = AdTg(lt)W
g
e (17)

where

Adg =

[
R 0

p̂R R

]
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is the adjoint representation for the Lie group element g, AdTg
will transform W g

e to the body frame. When a weight m is
hanged at the TCA’s end, W g

e = [0, 0, 0, 0, 0,−mgr]
T with

gr = 9.81 m/s2 the gravitational constant.

D. Modeling TCA Dynamics Using Cosserat Rod
Kinetostatic Model

TCAs are generally used for actuation (e.g., lifting weights).
In this case, we can simplify its dynamics model by ignoring the
inertial force of a TCA since the hanging weight is usually over
1000 times heavier than a TCA’s weight. In other words, we can
establish a simplified dynamics model based on the Cosserat
rod kinetostatics. Such a simplification can reduce the Cosserat
rod dynamics, which is a system of partial differential equations
with respect to time and space, to an ODE with respect only to
time

mẍ+ btẋ+ frod(x, T (t)) = 0 (18)

where x is the displacement of the weight m from the loaded
equilibrium, the ˙ is the derivative with respect to time, bt is
the damping coefficient of the TCA, frod(x, T (t)) is the TCA’s
internal force calculated from the Cosserat rod model for a
displacement x and temperature T (t).

IV. SIMPLIFICATION AND SPECIAL CASES

In this section, we show that existing models (e.g., Love’s
equation and CST) for the kinetostatics of TCAs can be consid-
ered as special cases of the more general Cosserat rod model.

A. TCA Kinetostatic Modeling With Love’s Equation

Love’s equation [37] establishes the kinematic relationship
between a helix’s pitch angle and its precursor fiber’s torsion
change, which has been proposed for modeling TCAs [10], [31].
But the equation is a special case of Cosserat rod model in terms
of a helix. In fact, a Cosserat rod model can be reduced to a
Kirchhoff rod model by ignoring the shear and extension strains,
and then the Kirchhoff rod model can be further reduced to
Love’s equation. Without shear and extension, a helical TCA
will have constant geometric curvature and torsion anywhere
along the centerline (i.e., u does not depend on s) if the external
force is along the centerline. Therefore, if we denote the third
element of uh(s) in (15) as τh, then we have τh = τ ∗ +Δθ̄h for
any point of the helix. This can be rearranged to

Δθ̄h = τh − τ ∗ =
sinαh cosαh

rh − sinα∗ cosα∗

r∗
(19)

which is the same form of Love’s equation as in [1], [10],
and [31].

Previous works only use Love’s equation for the coil kine-
matic model and need to rely on other coil static models (e.g.,
CST or a constant stiffness coefficient) [10], [31] to complete
a TCA model (see Table I). Here, we will directly use Love’s
equation to establish the statics model for TCAs.

When an external wrench W g
e in the global frame is applied

to a TCA and the wrench’s axis coincides with the TCA’s axis as
shown in Fig. 4(a), the corresponding internal wrench W in the

Fig. 7. (a) Wrench in the body frame (Fx and Mx are not shown since they
are zero). (b) Geometric relation of a helical TCA before and after deformation.

body frame will not vary with respect to s due to the symmetry
of the geometry around the axis of W g

e . Therefore, W at any s
is equal to the value at boundary, which can be calculated using
the boundary condition (17)

W = W (0) = AdTg0W
g
e (20)

where

Adg0 =

[
R0 0

p̂0R0 R0

]
. (21)

R0 and p0 are from (16), W g
e = [MT

e , F
T
e ]

T , Fe and Me

are, respectively, the external force and moment vectors, Fe =
[0, 0, Fe]

T , Me = [0, 0,Me]
T with Fe and Me, respectively,

the force and moment applied at the free end. For a hanging
weight, Fe = −mgr and Me = 0. Note that there is no need to
distinguish the boundaries at the two ends, i.e., Adg0 = Adg(lt).

Therefore, W =
[
mT ,nT

]T
with m = [Mx,My,Mz]

T

and n = [Fx, Fy, Fz]
T as shown in Fig. 7(a) can be

expressed as

Mx = 0

My = Fer sinα−Me cosα

Mz = −Fer cosα−Me sinα

Fx = 0, Fy = −Fe cosα, Fz = −Fe sinα.

(22)

After ignoring shear and extension, the constitutive law of the
Cosserat rod (8) can be reduced as m = Kbt(u− uh), which
can be decomposed to

Δκ =
My

EI
, Δτ =

Mz

GJ
(23)

where Δκ = κ− κh = cos2 α/r − cos2 αh/rh, and Δτ = τ −
τh = sinα cosα/r − sinαh cosαh/rh.

Since a TCA’s unwinding at the end is negligible, the total
coiling angle is a constant [φ does not change as shown in
Fig. 7(b)]

φ

lt
=

cosα

r
=

cosαh

rh =
cosα∗

r∗
. (24)
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Substituting Mz and My from (22) into (23) and using (24),
we have

Fe +
GJ cos2 α∗

r∗2
(
sinα− sinαh)

− EI tanα cos2 α∗

r∗2
(
cosα− cosαh) = 0.

(25)

We also have the following relationship for a TCA’s length,
as shown in Fig. 7(b)

l = lt sinα. (26)

Using (19), (25), (26) and simplifying, we can get the dis-
placement Δl = l∗ − l shown in Fig. 7(b) as a function of
external force Fe and the unit untwist Δθ̄h due to heat

Δl =
1

Klv
Fe −AlvΔθ̄h (27)

where

1

Klv
=

lt(r
h)2

GJ cos2 αh + EI tanα cosαh−cosα
sinα−sinαh

Alv =
ltr

∗

cosα∗ .

B. TCA Kinetostatic Modeling With Infinitesimal
Strain Theory

CST has been widely used to model a TCA’s kinetostat-
ics [24], [29], [30], [32], but the results from CST can be
considered as a linearized case of the Cosserat rod model by
loosening the geometry exactness using “small deformation”
approximation (Infinitesimal strain theory)—assuming the de-
formed shape is close to the initial shape.

The actuation is considered as an external force, Ma =

Δθ̄
h
GJ applied along z-axis; therefore, Mz = −Fer cosα−

Me sinα+Ma in W [see (22)]. Inverse the constitutive law
(8) to get Δξ = K−1W , which is the strain in the body frame,
and it can be transformed to the global frame due to the small
deformation assumption

Δξg = Adg0Δξ. (28)

The sixth element ofΔξg isΔξg6, which represents the TCA’s
linear strain along the global Z-axis. Integrating the strain over
the arc-length results in the TCA’s linear displacement. Since
Δξg6 is independent of the arc-length s, we have a form similar
to (27) but with different coefficients

Δl = ltΔξg6 =
1

Kcst
Fe −AcstΔθ̄h (29)

where

1

Kcst
= lt

(
r2 cos2 α

GJ
+

r2 sin2 α

EI
+

cos2 α

GAt
+

sin2 α

EAt

)
Acst = ltr cosα.

Note that based on the small deformation assumption, all the
variables are close to their values of the reference states, for
example, α ≈ α∗ ≈ αh. Although we do not distinguish them
in (29), the results’ accuracy could be improved by iteratively

updating the variables based on the previous step or using an
implicit solver, which can be observed in our supporting code.

Equation (29) is the same as the results from CST, which is
discussed in the Appendix, and it can be used to calculate a
TCA’s deformation when Fe and Δθ̄h are known. From (27)
and (29), it is clear that a TCA’s deformation comes from the
following two sources: the external loadFe and unit untwistΔθ̄h

resulted from thermal expansion.

C. Dynamics for Love’s and CST Methods

Although (27) and (29) are convenient for calculating the
static deformation, we rearrange them to an equilibrium of forces
to facilitate the extension to dynamics

Fe −Kc(Δl +AΔθ̄h) = 0 (30)

where Kc can be Klv or Kcst, and A can be Alv or Acst. We
call A the coil kinematic coefficient and Kc the coil stiffness
coefficient.

For the most common scenario when a weight is hanged at
the end of a TCA, the dynamics model can be easily extended
from a statics model by including damping force and inertial
force (Fe = −(mẍ+ btẋ+mgr))

mẍ+ btẋ+KcAΔθ̄h = 0. (31)

Note that x is the displacement of the weight from the loaded
equilibrium, and we use ΔlKc = −mgr, when Δl is the dis-
placement from the natural equilibrium (no load) to the loaded
equilibrium.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we experimentally validate our model and
compare its accuracy with existing models under different load-
ing scenarios for the self-coiled and free-stroke TCAs. We also
demonstrate our model can model conical TCAs.

A. Fabrication of TCAs

We fabricate the following three types of TCAs: a self-coiled
TCA, a free-stroke TCA, and a conical TCA. In the following,
we briefly describe the fabrication process.

The three types of TCAs have the same twisted fibers. Since
it is made from threads, we will use twisted threads in the rest of
this section. To fabricate the twisted thread, we hang a weight
of 240 g at the end of a sewing thread (Shieldex Trading, 235/36
dtex 4 ply HC+B) and twist it until reaching the verge of self-
coiling by inserting unit twist 4.71 rad/mm. A weight heavier
than 240 g may easily break the threads, and a lighter weight
will not allow for enough twisting of the threads. The unit twist
in the twisted threads for the three TCAs are the same, and the
parameters of the twisted threads are listed in Table II.

The self-coiled TCA is fabricated by continuously inserting
twisting to the twisted thread. To make sure the prescribed
amount of twist is inserted in the twisted thread, we manually
trigger the self-coiling process by reducing the hanging weight
from 240 to 210 g and manually disturbing the thread. After
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TABLE II
PARAMETERS OF THE TWISTER FIBER FOR ALL THE TCAS

Fig. 8. (a) Helical mandrel with the coiled free-stroke TCA. (b) Conical
mandrel with the conical TCA.

the first coil is triggered, we continuously insert twisting to the
thread to finish the coiling process.

The free-stroke TCA is fabricated by coiling the twisted
thread in the groove of a helical mandrel. The helical mandrel
is fabricated by wrapping a thin copper wire on a mandrel core
(thick copper wire) in a helical shape with a pitch angle of 22.42◦,
as shown in Fig. 8(a). A customized machine is used, and the
detailed fabrication process of free-stroke TCAs can be found
in [9].

The conical TCA is fabricated by coiling the twisted thread on
a conical spiral mandrel [see Fig. 8(b)] made of heat-resistant
material (EpoxAcast 670 HT, Smooth-On, Inc.). The conical
mandrel is a copy of our 3-D printed conical mandrel (Objet30,
Stratasys Ltd.), because the 3-D printed part is not heat resistant.
The copying procedure is as follows:

1) fabricate a mold using the 3-D printed part and silicone
rubber (Mold Max 29NV, Smooth-On, Inc.);

2) cast the EpoxAcast 670 HT to the mold;
3) demold the mandrel and perform a heat treatment before

use.
The conical spiral groove in the conical mandrel has a con-

stant pitch pc = 10.6 mm and a cone angle 12◦ that results in
a = 2π/pc and b = tan(12π/360) for the conical spiral’s curve
equation (36) in the Appendix.

TABLE III
PARAMETERS OF THE SELF-COILED, FREE-STROKE, AND CONICAL TCA

NC: Nonconstant

The three types of TCAs’ ends are constrained and annealed
in an oven (10GCE, Quincy Lab, accuracy 0.5 ◦C) for 2.5 h
at a temperature of 185 ◦C, which will stabilize the shapes.
Finally, the free-stroke TCA and conical TCA are removed from
the mandrels. The parameters of the three TCAs are listed in
Table III.

B. Numerical Implementations for the Cosserat Rod Model

1) Quaternions as Rotation: Spatial derivative of rotations
(R′) is integrated using nonunit quaternions to avoid truncation
error and ensure R ∈ SO(3) [49]. This method allows any
high-order integration scheme or general purpose ODE solver
to efficiently integrate rotations over long spatial range while
eliminating singularities and maintaining the structure of SO(3).
The basic idea is to represent R using a quaternion h, and
represent R′ using h′ and u, then the integration of R′ can be
performed by integrating h′.

A quaternion h = h0 + h1i+ h2j + h3k, where i, j, and k
are called quaternionic units. h can be written in a vector form
in R4: h = [h0, h1, h2, h3]

T . Then, we can have the derivative
of h with respect to s as [49]

h′ =
1

2

⎡⎢⎢⎢⎣
0 −ux −uy −uz

ux 0 uz −uy

uy −uz 0 uz

uz uy −ux 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
h0

h1

h2

h3

⎤⎥⎥⎥⎦ (32)

where ux, uy , and uz are elements of u. We can also calculate
rotational matrix R using h

R(h) = I +
2

hTh

⎡
⎢⎢⎣

−h2
2 − h2

3 h1h2 − h3h0 h1h3 + h2h0

h1h2 + h3h0 −h2
1 − h2

3 h2h3 − h1h0

h1h3 − h2h0 h2h3 + h1h0 −h2
1 − h2

2

⎤
⎥⎥⎦ .

(33)
It is also useful to calculate h from a rotational matrix R

to obtain the initial condition. A robust numerical scheme [50]
quat2rotm in MATLAB is used to find h0 = quat2rotm(R0).

2) Finite Difference Solver: Equations (6)–(8) together with
boundary conditions (16) and (17) represent a BVP that can be
solved by the following two typical methods: shooting meth-
ods or finite-difference methods. A shooting method iteratively
guesses the unknown boundary values for the fixed end (initial
boundary) and evaluates the boundary values at the other end af-
ter numerical integration, which is fast for certain problems [44].
However, we found that the shooting method could not provide
good initial guesses for a complicated shape such as TCAs
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with many coils. Therefore, we use a finite difference solver
in MATLAB BVP5c [51].

3) Simulation Process of TCA Statics: For a simple case
where a weight is hanged at the end of a TCA and then lifted
up, the simulation process is shown in Algorithm 1.

The program has the following two inputs: the maximum tem-
perature and the weight. It begins with declarations of the various
physical parameters. Then, it solves the static equilibrium of the
TCA with weight at the end before increasing temperature. In the
main loop, each step, it updates the corresponding unit untwist
Δθ̄ [see (4)], the HRS strain [see (15)], and material modulus
[see (9)–(11)] according to the temperature increase. After that,
it solves the BVP [see (6)–(8), (16), and (17)] with visualization
of results.

4) Simulation Process of TCA Dynamics: We solve (18)
using the finite-difference method combined with the shooting
method. The shooting method first guesses and then solves the
internal force of the rod frod,i for time step i that minimize
the residual resi = |frod,i −mẍi − bẋi|, using central difference
schemes [52]

ẍi =
xi+1 − 2xi + xi−1

Δt2
, ẋi =

xi+1 − xi−1

2Δt

where Δt is the time step size, i ∈ {1, . . . , Ns} is index of
the time step, and Ns is the total number of time steps. The
displacement xi is solved as an intermediate variable.

C. Numerical Schemes for Love’s and CST Methods

The numerical scheme for the two methods is the same. A
general statics simulation scheme is boxed in the green area in
Fig. 9. First, a temperature T is input into the fiber actuation
model to obtain the unit untwisting Δθ̄h of the twisted fiber, and
then Δθ̄h is input into the coil kinematic model to obtain the
displacement and pitch angle due to actuation. Given an external
force Fe, the final displacement Δl can be calculated from the
coil static model by solving the equilibrium equation with the
nonlinear moduli (E and G) influenced by the temperature.

A general dynamics simulation scheme is shown in Fig. 9
as boxed by black dashed lines. The model takes time-varying
electric power Pin(t) as the input to solve the temperature T
using the thermal model. Then, T is input into the static model.

Fig. 9. Schematic of the TCA’s dynamics model. The green shaded area is a
schematic of the static model with T and Fe as the input, and Δl as output.

In addition to a static external force Fe, time-varying load such
as inertial force (mẍ) and damping force (btẋ) are implicitly
calculated using the same method as the rod dynamics.

D. Kinetostatics and Dynamics of Self-Coiled and
Free-Stroke TCAs

To compare the accuracy of various methods, the following
three cases of simulations and experiments are conducted for the
self-coiled TCA and the free-stroke TCA.

1) Considerations on the Experiments and Simulation: Due
to the viscoelastic effect of the nylon 6,6 material, a TCA will
gradually elongate to another length corresponding to the load
applied to it after a certain time or through a few heating cycles
known as creep [53], [54]. “Lonely stroke” is used to describe
the phenomenon that a TCA’s displacement will be influenced
by its time history of loading [55].

While the equilibrium length at a certain time cannot be
predicted without considering viscoelasticity, most applications
of TCAs only consider the actuation displacement of the TCAs
starting from an equilibrium length, which can be easily mea-
sured in applications, especially when closed-loop control is
required. In this work, we conduct experiments starting at such
an equilibrium state as if the TCA has already crept to the length
corresponding to the weight. We also use the reference state
corresponding to the length as the reference for simulation.

A helical TCA will stop contraction when neighboring coils
contact each other. Therefore, its stroke is mainly limited by coil
contact, especially when the load is small. For some applica-
tions, prediction of contact is preferred. As a general modeling
framework, we consider the coil contact by using a Sigmoid
(Logistic) function to reduce Δθ̄h, once α < αmin, let Δθ̄h =
Δθ̄h + 20e50(αmin−α), whereαmin is calculated by measuring the
minimum length of a TCA.

We study the following three most common application sce-
narios for helical TCAs:

1) kinetostatics with a hanging-weight;
2) explicitly known varying load;
3) dynamics with a hanging-weight.
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Fig. 10. Case 1: Kinetostatics with a hanging weight. (a) Experimental setup. (b) Comparison between simulation results using the rod model and experimental
results for the self-coiled TCA. (c) Comparison between simulation results using the rod model and experimental results for free-stroke TCA. (d), (e), and (f)
Normalized displacement error of the simulations for the self-coiled TCA using the Cosserat rod model, Love’s method and CST method respectively for 50 g,
100 g, and 200 g. (g), (h), and (i) Normalized displacement error of the simulations for the free-stroke TCA using the Cosserat rod model, Love’s method and CST
method, respectively, for 2 g, 30 g, and 60 g.

Each type of experiment is repeated three times and the mean
value and standard deviation are, respectively, plotted as a solid
line and the corresponding shaded area.

2) Case 1: Kinetostatics With a Hanging Weight: We first
evaluate the kinetostatics when we hang a weight at the end of
a TCA by gradually increasing the TCA’s temperature. Such
an experiment is a common case for TCAs. In fact, most of
references in Table I use this case to verify their models. Our
experimental setup is shown in Fig. 10(a). The TCA’s top is
fixed to the inner roof of an oven, and its bottom is connected
to a carbon fiber rod, whose top end comes out from the vent
hole of the oven. We place a marker at the top of the carbon fiber
rod and use a laser displacement sensor (OPT2006, Wenglor
sensoric GmbH) to measure the TCA’s contraction. The weight
of the carbon fiber rod with the marker is negligible (0.2 g). In
an experiment, a weight is hanged at the bottom of a TCA: 2,
30, and 60 g for the free-stroke TCA; 50, 100g, and 200 g for
the self-coiled TCA.

In the experiment, the temperature inside the oven slowly
increases to 160 ◦C from the room temperature (25 ◦C) in around
14 mins, and the temperature is recorded with a thermistor
(EPCOS Inc., B57540G0503F000). Due to the comparable sizes
of the TCA and the thermistor and the slow increasing rate of
the temperature, the TCA’s temperature is approximately the
temperature measured by the thermistor. Before an experiment,
we place the corresponding weight and conduct a heating cycle
(heat up and cool down) using electricity, and wait 3 mins to
start an experiment. This process will allow the TCA to quickly
creep to a length close to the equilibrium length corresponding to
the weight. Comparing with heating a TCA with electricity and
measuring the TCA’s temperature, conducting experiments in
an oven achieves better accuracy by eliminating environmental
influence. The slow heating process also provides enough time
for the thermistor to respond, and it also eliminates possible
dynamic effects (inertial and damping) for the statics.
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Fig. 11. Case 2: varying load. (a) Experimental setup. (b) Measured force and calculated temperature using the thermal model. (c) Comparison of the experimental
results and the simulation results using the three methods.

Fig. 10(b) and (c) shows the comparison between experimen-
tal and simulation results using the rod model for the self-coiled
TCA and the free-stroke TCA, respectively. The shaded area and
the solid line are respectively the mean value and the standard
deviation of three repeated measurements. The maximum stan-
dard deviation of all the static experiments for the two TCAs is
1.24 mm.

To quantify the accuracy of the three methods, the normal-
ized displacement error (the difference between simulation and
experimental results normalized by the maximum displacement
of three experiments) for the three methods are calculated and
plotted in Fig. 10(d)–(f) for the self-coiled TCA with 50, 100, and
200 g, and in Fig. 10(g), (h), and (i) for the free-stroke TCA with
2, 30, and 60 g. The results indicate that in terms of accuracy: rod
model > CST method > Love’s method. For all three methods,
the errors grow with the increase of the temperature and weight.
But the maximum error of the Cosserat rod model is less than
10%, whereas the maximum error for Love’s equation can be
around 40%. The potential reasons for the better accuracy of CST
method than Love’s method are 1) the CST method considers all
the same four strains (torsion, bending, shear, and extension) as
considered in the Cosserat rod model, but Love’s methods only
consider two strains (torsion and bending). 2) The numerical
simulation of the CST method iteratively updates its parameters
such as r and α. Even though the CST method is based on the
infinitesimal strain theory, the numerical iteration improves its
accuracy.

3) Case 2: Varying Load: After verifying the accuracy of the
kinetostatics modeling, we connect a TCA with a mechanical
spring to simulate a varying load when the TCA contracts. The
varying load from the spring only depends on the displacement,
not on time factors such as velocity or acceleration of the contrac-
tion (i.e., no dynamic effects). This case has many applications
in TCA-driven robots. A typical case is a soft manipulator driven
by embedded TCAs: the force on the TCA increases as the TCA
contracts to bend the soft manipulator [56].

As shown in Fig. 11(a), one end of the spring is fixed, and its
other end is attached to the TCA. The other end of the TCA is
connected to a force gauge (M5-12, Mark-10 Inc.) to measure
the real-time force during the experiments. To keep the TCA
taut, a 0.05 N pretension is applied. The laser displacement
sensor is used to record the TCA’s displacement by measuring

the displacement of a marker placed at the connection point
between the TCA and the spring. The TCA is actuated using
5 V voltage, and its power is recorded using a high-side cur-
rent/voltage sensor (INA 219, Adafruit), which is not a constant
due to the change of the TCA’s resistance during the actuation.
In this experiment, only the free-stroke TCA is used since it
can provide a large stroke without significant pretension. The
recorded force and the calculated temperature using the thermal
model are plotted in Fig. 11(b). Using the calculated temperature
and the measured force, we solve the TCA’s displacement using
the three models. The comparison between the simulation and
experimental results are shown in Fig. 11(c). Each experiment
is repeated three times, and the green shaded area represents
the standard deviation (maximum std = 1.58 mm). From the
comparisons, the Cosserat rod model is still the most accurate
modeling method.

4) Case 3: Dynamics With a Hanging Weight: Our final
experiment for helical TCAs is to evaluate the accuracy of
dynamics. In the experiments, a weight (30 g or 50 g) is
hanged at the end of the free-stroke TCA (60 g is not used
to prevent the TCA from breaking). A constant voltage (5 or
6 V) is applied to the TCA. The power and displacement of the
TCA are, respectively, measured as in previous experiments.
Each experiment is repeated three times, and the results are
shown in Fig. 12(a). The maximum standard deviation for the
four types of experiments is 0.84 mm. The comparison of the
experimental and simulation results using the three methods
for different combinations of weight and voltages are shown in
Fig. 12(b)–(e). With the rod model, the maximum displacement
error normalized by the maximum displacement is less than 12%
as shown in Fig. 12(f), which shows that the Cosserat rod method
provide better accuracy compared with the other two methods.

E. Nonuniform Geometry Case: Kinetostatics of a
Conical TCA

In this section, we demonstrate the capability of the Cosserat
rod model to simulate TCAs of nonuniform geometry (conical
TCAs). Conical TCAs can generate dual-side displacement and,
thus, provide stroke over 100%. To make sure the coils can pass
each other, the transverse gaps between coils are intentionally
designed to be large and thus the load-bearing capability of the
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Fig. 12. Case 3: Dynamics with a hanging weight. (a) Experimental results for the four cases. (b)–(e) Experimental and the simulation results for 5 V 30 g, 5 V
50 g, 6 V 30 g, and 6 V 50 g cases. The shaded area of the green curve represents the standard deviation of three repeated experiments. (f) Maximum displacement
error of the four cases for the three methods.

Fig. 13. Experimental and simulation results for the conical TCA. (a) Optical pictures of the conical TCA when heated in an oven compared with simulation
results, showing the progression of actuation during heating. The free end is marked with a red circle and the fixed end is marked with a blue triangle.
(b) Experimental and simulation results of the conical TCA’s end point’s vertical position with respect to temperature.

conical TCA is small. In our experiment, no load is applied to
the end of the conical TCA during the experiments.

The conical TCA is fixed on a vertical carbon fiber rod placed
in the oven with a transparent door, and a camera records the
actuation of the conical TCA during the heating process. In our
simulation, the fixed end is marked with a blue triangle and the
free end is marked with a red circle. Fig. 13(a) shows the optical
pictures of the conical TCA and the corresponding simulated
shapes for different temperatures (also see our supporting video).
The comparison suggests the simulation can well capture the
shape of the TCA. The minor error could be caused by the heated

air flowing in the oven. The results seem surprising—the bigger
coils pass the small coils and it does not exist a moment when all
coils coincide on a plane (like a flat spiral). But it is reasonable
since larger coils have a larger coil kinematic coefficient A and,
thus, can generate more displacement if no load is applied.

The displacement of the TCA’s free endpoint is ex-
tracted from the recorded video using Tracker software
(https://physlets.org/tracker). Similarly, the temperature is
recorded using the thermal sensor used for the helical TCA
experiments. Fig. 13(b) shows the comparison of the simulated
and experimental vertical position of the TCA’s free end with
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respect to temperature. The maximum standard deviation for the
three repeated experiments is 8.9 mm.

VI. DISCUSSIONS

Our proposed model based on the Cosserat rod theory is a
general and flexible framework. For generality, besides the three
type of TCAs discussed in this article, the Cosserat rod model
can be leveraged to model more complicated TCAs (e.g., TCA
of ellipse-helical or logarithmic spiral shapes) as long as we
can parametrize them along the twisted fiber. The framework
can also be extended to model TCA-inspired artificial muscles
(e.g., cavatapi [2] and dual-stroke artificial muscles [3] after the
untwisting with respect to stimuli is obtained). Similarly, the
framework can also be generalized to model stimuli-responsive
materials (e.g., shape memory alloy coils) by incorporating
memorized shapes and moduli change with respect to the stimuli.
For flexibility, this work contains some “complicated” parts, but
the Cosserat rod model can work without considering them for
potentially fast computations at the expense of worse accuracy.
For example, we considered the dependence of the moduli on
temperature and strain, but we can use a constantE andG for the
simulation. Note that the main contribution of this work is the
general modeling framework for various types of TCAs made
from the same twisted fiber. But if a different material or different
parameters are used to fabricate the TCA, the properties for the
twisted fiber need to be measured to obtain accurate results.

Although Cosserat rod model can provide better accuracy,
especially with heavy load and high temperature (see Fig. 10),
the simplified methods (e.g., CST) on average can be computed
10 times faster. For example, the dynamics case using the rod
model takes an average of 24 s for a simulation of 1 s while
the other methods take around 2 s (all with a step size of 0.05 s
running on an Intel Xeon E3-1245 CPU at 3.4 GHz). In this case,
the simplified models should be used when a TCA is subject to
a small payload and low temperature. More generally, based on
the discussion in Section IV, one can customize a simplified
model by choosing A and Kc from either the Love’s method or
the CST method, or even choose to obtain A and Kc through
measurement. In the future, however, the computation speed of
using Cosserat rod method can be significantly improved by
using a discrete elastic rod method [57], [58], implementation
in C++, and parallel computing.

Besides the three loading cases, a TCA could subject to more
complicated loading cases when used to actuate robots [56].
Our general framework for modeling TCAs can be leveraged for
modeling these TCA-driven robots since it allows us to predict
the output force and displacement that drive the robot to work.
Such a general model even open the possibilities to model the
performance of robots driven by TCAs of various shapes, for
example, robotic morphing skins driven by conical TCAs [22],
which is impossible with other TCA modeling methods.

Finally, this article focuses on modeling the exact mechanics
of a TCA’s actuation process without considering the releasing
process (i.e., when the temperature decreases). But the releasing
can be modeled using the same mechanics model with different
temperature profiles as verified by other works [13], [32]. In

other words, a TCA’s displacement is roughly the same for a
specific temperature no matter it is in a releasing or actuation
stage. And a TCA’s temperature in the releasing stage can be
predicted by the same thermal model (see (1)) by settingPin = 0.
For a highly dynamic and cyclic situation, hysteresis and friction
effect should be considered for control purposes [59], [60]. In our
work, “lonely stroke” [55] is accounted for by starting the sim-
ulation from a crept state, and dynamic hysteresis is described
using a damping term that provided a modest approximation
for its dynamic behavior. These considerations pave the way for
advanced modeling of the nonlinear effects.

VII. CONCLUSION

In this article, we presented a general physics-based modeling
framework for various types of TCAs using the Cosserat rod
model. Compared with existing works, the model was able to not
only provide more accurate results but also simulate TCAs with
nonuniform geometries. We also showed that existing Love’s
and CST methods are two special simplified cases of a Cosserat
rod model. This model paved the way to better understand the
mechanics of TCAs as well as design TCAs to actuate a variety
of robots/systems/devices. Our future work could attempt to
improve model accuracy by incorporating additional effects,
such as the creeping of the TCA and stress relaxation. Future
work will also apply the model for TCA-driven robots, which
involves interaction with the environment such as friction and
contact forces.

APPENDIX

A. Detailed Derivation

1) Constitutive Law of a General Twisted Yarn: Based on the
existing yarn mechanics theory, the twisted fiber is a transversely
isotropic material, and its general stress-strain relationships
is [47]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(34)

where the subscripts T and L, respectively, represent the trans-
verse direction (x or y) and longitudinal direction (z). εs and γs
are normal and shear stress, and σs and τs are normal and shear
strains in mechanics convention. EL (ET ) is the longitudinal
(transverse) modulus governing uniaxial loading in the z (trans-
verse) direction, νLT (νTL, νTT ) is the associated Poisson’s ratio
governing induced transverse (longitudinal, remaining orthogo-
nal transverse) strains.GTL (GT ) is the longitudinal (transverse)
shear modulus governing shear in the longitudinal direction
(transverse plane).

The twisted fiber’s mechanical properties depend on its fil-
ament direction αf , as shown in Fig. 14(a). The Cosserat rod
model assumes a rigid cross-section; therefore, εx, εy and γxy
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Fig. 14. (a) Microscopic photo of a twisted fiber. (b) Cross section of the
twisted fiber taken at the x− y plane of the body frame. Strain quantities on this
face of a small volume element at point pG are shown.

do not exist, and the constitutive relation for the transversely
isotropic rod reduces to

σz = Eεz, τzx = Gγzx, τzy = Gγzy (35)

where for simplicity, we useE = EL is the longitudinal Young’s
modulus, and G = GTL is the longitudinal shear modulus. The
strains can be related to the independent variables v and u:
[γzx, γzy, εz]

T = Δv − pG ×ΔuwherepG = [x, y, 0]T is the
position of the element within the cross section as shown in
Fig. 14(b), Δv = v − v∗ and Δu = u− u∗, and the values
with ∗, v∗ and u∗, are, respectively, the values of v and u
in the ORS. Manipulating these equations, we can establish a
relationship between Δξ and W , which simplifies to (8).

B. Identify h in (1) and λ in (11)

To identify h in (1), we first conduct a statics experiment
to infer the actual T − t (temperature-time) relationship of a
dynamics experiment, and then use the T − t relationship to
identify h. For the statics experiment, we slowly heat up a
free-stroke TCA with a 60 g at the end in an oven while
measuring theT − x (temperature—displacement) relationship.
The 60 g (the maximum weight used in our manuscript) will
prevent the coils from early contact. After that, we can conduct
the dynamics experiment to obtain the x− t relationship of a
TCA by applying a constant voltage (5 V). Using the T − x
and x− t relationships, we can infer the temperature of the
dynamic experiment to obtain theT − t relationship using linear
interpolation.

With the T − t relationship, we can perform a linear regres-
sion to obtain h. Specifically, we formulated an optimization
problem: find h that minimizes the root mean square error
between the experimental and simulation results RMSE(h) =√

Σn
i=1(Texp,i − Tsim,i(h))/n.

λ = μ2τ
2 + μ1τ + μ0 in (11) determines how the strain mod-

uli will change due to large external load under high temperature.
The coefficients μ0, μ1, μ2 are solved using three pair of values
[τ1, λ1], [τ2, λ2], [τ3, λ3], corresponding to three different
external loads (0, 30, and 60 g) applied to the TCA, which are
identified through an experiment using a free stroke TCA. We
choose 30 g and 60 g because 60 g is the largest load for the

TCA in this work and 30 g is the half of the maximum load,
over which the moduli changes become significant based on our
observations. Since the moduli only drop significantly when the
temperature and load are high, we measure the displacement of
the TCA at the highest temperature (160 ◦C). When there is no
load, we have [τ1, λ1]=[0, 1], which means the change of Ef in
(11) is only from the increase of the temperature. When there is
a 30 g load, we can obtain λ2 = 1 by assuming that there is no
moduli change from no load to 30 g. Based on the linear strain
deformation theory, τ3 − τ2 = τ2 − τ1, therefore, τ2 = τ3/2.

When there is a 60 g load, we solve the correspond-
ing [τ3, λ3] as follows. We first calculate the shear modu-
lus corresponding to 60 g using a linear relationship G60 =
(ltr

2 cosα30)/(ΔxJ)ΔFe, where Δx is the displacement of
the TCA when a weight is increased from 30 to 60 g, and α30

is the pitch angel for the situation with 30 g. λ3 = 5.68 can be
reversely calculated using (10) and (11) with known G60. To
obtain the torsional strain τ3, we first calculate the pitch angle
α60 using the displacement, and then the torsion strain change
with respect to the situation of 30 g can be calculated using
τ3 − τ2 = (sin 2α60 − sin 2α30)/2r ≈ 85.5 [similar to (19)].
Therefore, [τ3, λ3] = [171, 5.68] and [τ2, λ2] = [85.5, 1]. We
can find the coefficientsμ2,μ1, andμ0 by fitting the three points.

C. Reference Twist and Boundary Condition for Conical TCAs

We fabricate the conical TCA in conical Archimedes’s spiral
shape

p∗(z) =
[
bz cos(az), bz sin(az), z

]T
(36)

where z is the vertical height, b is radial scaling factor, and a is
angular scaling factor.

To establish initial and boundary condition for the rod model,
the rod geometry needs to be parameterized using arc length s
that can be easily derived by integrating the derivative of the
position vector with respect to z

s(z) =

∫ z

0

|dp
∗

dz
|dz =

1

2
z
√

1 + b2(1 + a2z2)

+
1 + b2

2ab
sinh−1

(
abz√
1 + z2

)
.

(37)

To use the Cosserat rod model, the curve needs to be parame-
terized using s. However, z in (37) cannot be analytically solved
and there is no explicit form to express p in terms of s as done
for a helix in (12).

To solve this problem, we discrete the spiral into N segments
and numerically find zi for a specific si (i ∈ [1, N ]) by solving
s(zi) = si using (37) by a root searching method (fzero() in
MATLAB). At the end of ith segment, the curvature and the
torsion of the spiral can be found by

κ∗(zi) =
abz

√
4 + a2z2i + b2(2 + a2b2)2(
1 + b2(1 + a2z2))3/2

) (38)

τ ∗(zi) =
a(6 + a2z2i )

4 + a2z2i + b2(2 + a2z2i )
2
. (39)
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The global frame’s Z direction along the centerline of the
helical spiral; the body frame’s z direction is along tangent
direction of the curve and the cross section is in the x–y plane.
The heated reference strain can be obtained as

uh(zi) =

⎡⎢⎣ 0

κ(zi)

τ(zi)
∗ +Δθ̄h

⎤⎥⎦ , vh = v∗ = [0, 0, 1]T . (40)

The initial orientation and position for si = 0 are

p0 = [0, 0, 0]T , R0 = Rz(π + 0.1). (41)

The boundary condition for the free end is W (lt) =
[0, 0, 0, 0, 0, 0]T since no load is applied.

D. Kinetostatic Modeling Using CST

In our previous work [29], CST is directly used to model a
TCA, but here we present a more concise derivation. The actu-
ation is considered as an external force, Ma = Δθ̄

h
GJ applied

along z-axis, which means Mz = −Fer cosα−Me sinα+
Ma in W . The complementary strain energy will be equal to the
strain energy under the small deformation assumption, leading
to [61]

U ∗ =
∫ lt

0

(W TK−1W )ds

=

∫ lt

0

[
M2

z

2GJ
+

M2
y

2EI
+

F 2
y

2GAt
+

F 2
z

2EAt

]
ds

(42)

where U ∗ is the complimentary strain energy. Notice that six
deformation terms are reduced to four terms since Mx = 0 and
Fx = 0. Since Me is not considered, we can obtain (29) after
we apply CST: dU ∗

dFe
= l∗ − l.
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